Show simple item record

dc.contributor.authorRuelle, Elodie
dc.contributor.authorDelaby, Luc
dc.contributor.authorShalloo, Laurence
dc.date.accessioned2020-06-30T11:56:56Z
dc.date.available2020-06-30T11:56:56Z
dc.date.issued2019-01-26
dc.identifier.citationRuelle, E., Delaby, L. and Shalloo, L. Linkage between predictive transmitting ability of a genetic index, potential milk production, and a dynamic model. Journal of Dairy Science, 2019, 102(4), 3512-3522. doi: https://doi.org/10.3168/jds.2018-15197en_US
dc.identifier.urihttp://hdl.handle.net/11019/2103
dc.descriptionpeer-revieweden_US
dc.description.abstractWith the increased use of information and communication technology–based tools and devices across traditional desktop computers and smartphones, models and decision-support systems are becoming more accessible for farmers to improve the decision-making process at the farm level. However, despite the focus of research and industry providers to develop tools that are easy to adopt by the end user, milk-production prediction models require substantial parameterization information for accurate milk production simulations. For these models to be useful at an individual animal level, they require the potential milk yield of the individual animals (and possibly potential fat and protein yields) to be captured and parameterized within the model to allow accurate simulations of the interaction of the animal with the system. The focus of this study was to link 3 predicted transmitting ability (PTA) traits from the Economic Breeding Index (PTA for milk yield, fat, and protein) with potential index parameters for milk, fat, and protein required as inputs to a herd-based dynamic milk model. We compiled a data set of 1,904 lactations that included different experiments conducted at 2 closed sites during a 14-yr period (2003–2016). The treatments implied different stocking rates, concentrate supplementation levels, calving dates, and genetic potential. The first step, using 75% of the data randomly selected, was to link the milk, fat, and protein yields achieved within each lactation to their respective PTA value, stocking rate, parity, and concentrate supplementation level. The equations generated were transformed to correspond to inputs to the pasture-based herd dynamic milk model. The equations created were used in conjunction with the model to predict milk, fat, and protein production. Then, using the remaining 25% data of the data set, the simulations were compared against the actual milk produced during the experiments. When the model was tested, it was capable of predicting the lactation milk, fat, and protein yield with a relative prediction error of <10% at the herd level and <13% at the individual animal level.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofseriesJournal of Dairy Science;Vol. 102 (4)
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectdairy cowen_US
dc.subjectmodelen_US
dc.subjectgenetic indexen_US
dc.subjectlinken_US
dc.titleLinkage between predictive transmitting ability of a genetic index, potential milk production, and a dynamic modelen_US
dc.typeArticleen_US
dc.embargo.terms2020-01-26en_US
dc.identifier.doihttps://doi.org/10.3168/jds.2018-15197
dc.contributor.sponsorDepartment of Agriculture, Food and the Marineen_US
dc.contributor.sponsorGrantNumber11/S/132en_US
refterms.dateFOA2020-01-26T00:00:00Z


Files in this item

Thumbnail
Name:
1-s2.0-S0022030219300797-main.pdf
Size:
1.678Mb
Format:
PDF
Description:
main article

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States