• Login
    View Item 
    •   T-Stór
    • Other Teagasc Research
    • Teagasc publications in Biomed Central
    • View Item
    •   T-Stór
    • Other Teagasc Research
    • Teagasc publications in Biomed Central
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of T-StórCommunitiesPublication DateAuthorsTitlesSubjectsFunderThis CollectionPublication DateAuthorsTitlesSubjectsFunderProfilesView

    My Account

    LoginRegister

    Information

    Deposit AgreementLicense

    Statistics

    Display statistics

    Concordance rate between copy number variants detected using either high- or medium-density single nucleotide polymorphism genotype panels and the potential of imputing copy number variants from flanking high density single nucleotide polymorphism haplotypes in cattle

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    12864_2020_Article_6627.pdf
    Size:
    616.2Kb
    Format:
    PDF
    Download
    Author
    Rafter, Pierce
    Gormley, Isobel C
    Parnell, Andrew C
    Kearney, John F
    Berry, Donagh cc
    Keyword
    CNV
    Bovine
    PennCNV
    QuantiSNP
    Beagle
    FImpute
    SNP
    Imputation
    Date
    2020-03-04
    
    Metadata
    Show full item record
    Statistics
    Display Item Statistics
    URI
    http://hdl.handle.net/11019/2153
    Citation
    Rafter, P., Gormley, I.C., Parnell, A.C. et al. Concordance rate between copy number variants detected using either high- or medium-density single nucleotide polymorphism genotype panels and the potential of imputing copy number variants from flanking high density single nucleotide polymorphism haplotypes in cattle. BMC Genomics 21, 205 (2020). https://doi.org/10.1186/s12864-020-6627-8
    Abstract
    Background The trading of individual animal genotype information often involves only the exchange of the called genotypes and not necessarily the additional information required to effectively call structural variants. The main aim here was to determine if it is possible to impute copy number variants (CNVs) using the flanking single nucleotide polymorphism (SNP) haplotype structure in cattle. While this objective was achieved using high-density genotype panels (i.e., 713,162 SNPs), a secondary objective investigated the concordance of CNVs called with this high-density genotype panel compared to CNVs called from a medium-density panel (i.e., 45,677 SNPs in the present study). This is the first study to compare CNVs called from high-density and medium-density SNP genotypes from the same animals. High (and medium-density) genotypes were available on 991 Holstein-Friesian, 1015 Charolais, and 1394 Limousin bulls. The concordance between CNVs called from the medium-density and high-density genotypes were calculated separately for each animal. A subset of CNVs which were called from the high-density genotypes was selected for imputation. Imputation was carried out separately for each breed using a set of high-density SNPs flanking the midpoint of each CNV. A CNV was deemed to be imputed correctly when the called copy number matched the imputed copy number. Results For 97.0% of CNVs called from the high-density genotypes, the corresponding genomic position on the medium-density of the animal did not contain a called CNV. The average accuracy of imputation for CNV deletions was 0.281, with a standard deviation of 0.286. The average accuracy of imputation of the CNV normal state, i.e. the absence of a CNV, was 0.982 with a standard deviation of 0.022. Two CNV duplications were imputed in the Charolais, a single CNV duplication in the Limousins, and a single CNV duplication in the Holstein-Friesians; in all cases the CNV duplications were incorrectly imputed. Conclusion The vast majority of CNVs called from the high-density genotypes were not detected using the medium-density genotypes. Furthermore, CNVs cannot be accurately predicted from flanking SNP haplotypes, at least based on the imputation algorithms routinely used in cattle, and using the SNPs currently available on the high-density genotype panel.
    Funder
    Science Foundation Ireland; Department of Agriculture, Food and the Marine
    Grant Number
    14/IA/2576; 16/RC/3835
    ae974a485f413a2113503eed53cd6c53
    https://doi.org/10.1186/s12864-020-6627-8
    Scopus Count
    Collections
    Teagasc publications in Biomed Central
    Animal & Bioscience

    entitlement

     
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.