Effect of Dextrose Equivalent on Maltodextrin/Whey Protein Spray-Dried Powder Microcapsules and Dynamic Release of Loaded Flavor during Storage and Powder Rehydration
Citation
Li K, Pan B, Ma L, et al. Effect of Dextrose Equivalent on Maltodextrin/Whey Protein Spray-Dried Powder Microcapsules and Dynamic Release of Loaded Flavor during Storage and Powder Rehydration. Foods 2020;9(12) doi: https://doi.org/10.3390/foods9121878 [published Online First: 2020/12/23]Abstract
The preparation of powdered microcapsules of flavor substances should not only protect these substances from volatilization during storage but also improve their di usion during use. This study aimed to investigate the e ects of maltodextrin (MD) with di erent dextrose equivalent (DE) values on retention of flavor substances during storage, and the dynamic release of flavor substances during dissolution. MDs with three di erent DE values and whey protein isolate were mixed in a ratio of 4:1 as wall materials to encapsulate ethyl acetate, and powdered microcapsules were prepared by spray drying. It was proved that MD could reduce the di usion of flavor substances under di erent relative humidity conditions through the interaction between core material and wall material. During dissolution, MD released flavor substances quickly owing to its superior solubility. The reconstituted emulsion formed after the powder dissolved in water recaptured flavor substances and made the system reach equilibrium. This study explored the mechanism of flavor release during the storage and dissolution of powder microcapsules and should help us understand the application of powder microcapsules in food systems.Funder
National Key R&D Program of China; China Agricultural University; TeagascGrant Number
2018YFC160220ae974a485f413a2113503eed53cd6c53
https://doi.org/10.3390/foods9121878
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International