Changes to the Oligosaccharide Profile of Bovine Milk at the Onset of Lactation
Author
Quinn, Erin M.O'Callaghan, Tom F.
T. Tobin, John
Murphy, John Paul
Sugrue, Katie
Slattery, Helen
O'Donovan, Michael
Hickey, Rita M.
Date
2020-12-01
Metadata
Show full item recordStatistics
Display Item StatisticsCitation
Quinn, E.M.; O’Callaghan, T.F.; Tobin, J.T.; Murphy, J.P.; Sugrue, K.; Slattery, H.; O’Donovan, M.; Hickey, R.M. Changes to the Oligosaccharide Profile of Bovine Milk at the Onset of Lactation. Dairy 2020, 1, 284-296. https://doi.org/10.3390/dairy1030019Abstract
Numerous bioactive components exist in human milk including free oligosaccharides, which represent some of the most important, and provide numerous health benefits to the neonate. Considering the demonstrated value of these compounds, much interest lies in characterising structurally similar oligosaccharides in the dairy industry. In this study, the impacts of days post-parturition and parity of the cows on the oligosaccharide and lactose profiles of their milk were evaluated. Colostrum and milk samples were obtained from 18 cows 1–5 days after parturition. Three distinct phases were identified using multivariate analysis: colostrum (day 0), transitional milk (days 1–2) and mature milk (days 3–5). LS-tetrasaccharide c, lacto-N-neotetraose, disialyllacto-N-tetraose, 3’-sial-N-acetyllactosamine, 3’-sialyllactose, lacto-N-neohexaose and disialyllactose were found to be highly affiliated with colostrum. Notably, levels of lactose were at their lowest concentration in the colostrum and substantially increased 1-day post-parturition. The cow’s parity was also shown to have a significant effect on the oligosaccharide profile, with first lactation cows containing more disialyllacto-N-tetraose, 6’-sialyllactose and LS-tetrasaccharide compared to cows in their second or third parity. Overall, this study identifies key changes in oligosaccharide and lactose content that clearly distinguish colostrum from transitional and mature milk and may facilitate the collection of specific streams with divergent biological functions.Funder
Teagascae974a485f413a2113503eed53cd6c53
https://doi.org/10.3390/dairy1030019
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International