Plasma lutein and zeaxanthin concentrations associated with musculoskeletal health and incident frailty in The Irish Longitudinal Study on Ageing (TILDA)
Author
Murphy, Caoileann H.Duggan, Eoin
Davis, James
O'Halloran, Aisling M.
Knight, Silvin P.
Kenny, Rose Anne
McCarthy, Sinead N.
Romero-Ortuno, Roman
Date
2023-01
Metadata
Show full item recordStatistics
Display Item StatisticsCitation
Murphy CH, Duggan E, Davis J, O'Halloran AM, Knight SP, Kenny RA, McCarthy SN, Romero-Ortuno R. Plasma lutein and zeaxanthin concentrations associated with musculoskeletal health and incident frailty in The Irish Longitudinal Study on Ageing (TILDA). Experimental Gerontology 2023;171:112013; doi https://doi.org/10.1016/j.exger.2022.112013.Abstract
Introduction Lutein and zeaxanthin are diet-derived carotenoids that are proposed to help mitigate frailty risk and age-related declines in musculoskeletal health via their anti-oxidant and anti-inflammatory properties. Therefore, this study aimed to investigate the association between lutein and zeaxanthin status and indices of musculoskeletal health and incident frailty among community-dwelling adults aged ≥50 years in the Irish Longitudinal Study on Ageing (TILDA). Methods Cross-sectional analyses (n = 4513) of plasma lutein and zeaxanthin concentrations and grip strength, usual gait speed, timed up-and-go (TUG), probable sarcopenia (defined as grip strength <27 kg in men, <16 kg in women), and bone mass (assessed using calcaneal broadband ultrasound stiffness index) were performed at Wave 1 (2009–2011; baseline). In the longitudinal analyses (n = 1425–3100), changes in usual gait speed (at Wave 3, 2014–2015), grip strength (Wave 4, 2016) and TUG (at Wave 5, 2018), incident probable sarcopenia (at Wave 4) and incident frailty (Fried's phenotype, Frailty Index, FRAIL Scale, Clinical Frailty Scale-classification tree, at Wave 5) were determined. Data were analysed using linear and ordinal logistic regression, adjusted for confounders. Results Cross-sectionally, plasma lutein and zeaxanthin concentrations were positively associated with usual gait speed (B [95 % CI] per 100-nmol/L higher concentration: Lutein 0.59 [0.18, 1.00], Zeaxanthin 1.46 [0.37, 2.55] cm/s) and inversely associated with TUG time (Lutein −0.07 [−0.11, −0.03], Zeaxanthin −0.14 [−0.25, −0.04] s; all p < 0.01), but not with grip strength or probable sarcopenia (p > 0.05). Plasma lutein concentration was positively associated with bone stiffness index (0.54 [0.15, 0.93], p < 0.01). Longitudinally, among participants who were non-frail at Wave 1, higher plasma lutein and zeaxanthin concentrations were associated lower odds of progressing to a higher frailty category (e.g. prefrailty or frailty) by Wave 5 (ORs 0.57–0.89, p < 0.05) based on the Fried's phenotype, FRAIL Scale and the Clinical Frailty Scale, and in the case of zeaxanthin, Frailty Index. Neither plasma lutein nor zeaxanthin concentrations were associated with changes in musculoskeletal indices or incident probable sarcopenia (p > 0.05). Conclusion Higher plasma lutein and zeaxanthin concentrations at baseline were associated with a reduced likelihood of incident frailty after ~8 years of follow up. Baseline plasma lutein and zeaxanthin concentrations were also positively associated with several indices of musculoskeletal health cross-sectionally but were not predictive of longitudinal changes in these outcomes over 4–8 years.Funder
Teagasc Research Leaders 2025 programme; H2020 Marie Skłodowska-Curie ActionsGrant Number
754380ae974a485f413a2113503eed53cd6c53
https://doi.org/10.1016/j.exger.2022.112013
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons