Author
van Noort, VeraBradatsch, Bettina
Arumugam, Manimozhiyan
Amlacher, Stefan
Bange, Gert
Creevey, Christopher J.
Falk, Sebastian
Mende, Daniel R
Sinning, Irmgard
Hurt, Ed
Bork, Peer
Date
2013-01-10
Metadata
Show full item recordStatistics
Display Item StatisticsCitation
Vera van Noort, Bettina Bradatsch, Manimozhiyan Arumugam, Stefan Amlacher, Gert Bange, Chris Creevey, Sebastian Falk, Daniel R Mende, Irmgard Sinning, Ed Hurt and Peer Bork. Consistent mutational paths predict eukaryotic thermostability. BMC Evolutionary Biology 2013, 13:7 doi:10.1186/1471-2148-13-7Abstract
Background: Proteomes of thermophilic prokaryotes have been instrumental in structural biology and successfully exploited in biotechnology, however many proteins required for eukaryotic cell function are absent from bacteria or archaea. With Chaetomium thermophilum, Thielavia terrestris and Thielavia heterothallica three genome sequences of thermophilic eukaryotes have been published. Results: Studying the genomes and proteomes of these thermophilic fungi, we found common strategies of thermal adaptation across the different kingdoms of Life, including amino acid biases and a reduced genome size. A phylogenetics-guided comparison of thermophilic proteomes with those of other, mesophilic Sordariomycetes revealed consistent amino acid substitutions associated to thermophily that were also present in an independent lineage of thermophilic fungi. The most consistent pattern is the substitution of lysine by arginine, which we could find in almost all lineages but has not been extensively used in protein stability engineering. By exploiting mutational paths towards the thermophiles, we could predict particular amino acid residues in individual proteins that contribute to thermostability and validated some of them experimentally. By determining the three-dimensional structure of an exemplar protein from C. thermophilum (Arx1), we could also characterise the molecular consequences of some of these mutations. Conclusions: The comparative analysis of these three genomes not only enhances our understanding of the evolution of thermophily, but also provides new ways to engineer protein stability.Funder
Deutsche ForschungsgemeinschaftGrant Number
SFB 638/B2ae974a485f413a2113503eed53cd6c53
http://dx.doi.org/10.1186/1471-2148-13-7