• Login
    View Item 
    •   T-Stór
    • Animal & Grassland Research & Innovation Programme
    • Animal & Bioscience
    • View Item
    •   T-Stór
    • Animal & Grassland Research & Innovation Programme
    • Animal & Bioscience
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of T-StórCommunitiesPublication DateAuthorsTitlesSubjectsFunderThis CollectionPublication DateAuthorsTitlesSubjectsFunderProfilesView

    My Account

    LoginRegister

    Information

    Deposit AgreementLicense

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Genetic merit for fertility traits in Holstein cows: I. Production characteristics and reproductive efficiency in a pasture-based system

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    JDS_resubmit_Genetics_for_fert ...
    Size:
    334.3Kb
    Format:
    PDF
    Download
    Author
    Cummins, Sean B
    Lonergan, P.
    Evans, A.C.O.
    Berry, Donagh cc
    Evans, R. D.
    Butler, Stephen T.
    Keyword
    genetic selection
    fertility trait
    reproduction
    insulin-like growth factor-I
    Date
    2012-03
    
    Metadata
    Show full item record
    Statistics
    Display Item Statistics
    URI
    http://hdl.handle.net/11019/293
    Citation
    S.B. Cummins, P. Lonergan, A.C.O. Evans, D.P. Berry, R.D. Evans, S.T. Butler. Genetic merit for fertility traits in Holstein cows: I. Production characteristics and reproductive efficiency in a pasture-based system. Journal of Dairy Science, 95(3), March 2012: 1310-1322. DOI:10.3168/jds.2011-4742
    Abstract
    The objective of the present study was to characterize the phenotypic performance of cows with similar proportions of Holstein genetics, similar genetic merit for milk production traits, but with good (Fert+) or poor (Fert−) genetic merit for fertility traits. Specifically, we tested the hypothesis that cows with a negative estimated breeding value for calving interval would have superior fertility performance and would have detectable differences in body reserve mobilization and circulating concentrations of metabolic hormones and metabolites compared with cows that had a positive estimated breeding value for calving interval. For the duration of the study, cows were managed identically as a single herd in a typical grass-based, spring-calving production system. A total of 80 lactation records were available from 26 Fert+ and 26 Fert− cows over 2 consecutive years (2008 and 2009). During yr 1, cows were monitored during a 20-wk breeding season to evaluate reproductive performance. Milk production, body condition score (scale 1 to 5), body weight, grass dry matter intake, energy balance, and metabolic hormone and metabolite data were collected during both years. The Fert+ cows had greater daily milk yield (19.5 vs. 18.7 kg/d), shorter interval from calving to conception (85.6 vs. 113.8 d), and fewer services per cow (1.78 vs. 2.83). No difference between groups in grass dry matter intake, energy balance, or body weight was observed. The Fert+ cows maintained greater BCS during mid (2.84 vs. 2.74 units) and late lactation (2.82 vs. 2.73 units). Circulating concentrations of insulin-like growth factor-I were greater throughout the gestation-lactation cycle in Fert+ cows (148.3 vs. 128.2 ng/mL). The Fert+ cows also had greater circulating concentrations of insulin during the first 4 wk of lactation (1.71 vs. 1.24 μIU/mL). Analysis of records from national herd data verified the association between genetic merit for fertility traits and phenotypic reproductive performance; Fert+ cows (n = 2,436) required 11.1 d less to recalve than did Fert− cows (n = 1,388), and the percentage of cows that successfully calved for the second time within 365 and 400 d of the first calving was 8 and 13% greater for Fert+ compared with Fert− cows, respectively. These results demonstrate that genetic merit for fertility traits had a pronounced effect on reproductive efficiency, BCS profiles, and circulating concentrations of insulin-like growth factor-I.
    ae974a485f413a2113503eed53cd6c53
    http://dx.doi.org/10.3168/jds.2011-4742
    Scopus Count
    Collections
    Animal & Bioscience

    entitlement

     
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.