The aim of the Teagasc Animal and Grassland Research & Innovation Programme is to increase the profitability, competitiveness and sustainability of Irish livestock production through research and innovation.

Collections in this community

Recent Submissions

  • Breed- and trait-specific associations define the genetic architecture of calving performance traits in cattle

    Purfield, Deirdre C; Evans, Ross D; Berry, Donagh; European Union; Science Foundation Ireland; 727213; 14/IA/2576); 16/RC/3835 (Oxford University Press (OUP), 2020-05-04)
    Reducing the incidence of both the degree of assistance required at calving, as well as the extent of perinatal mortality (PM) has both economic and societal benefits. The existence of heritable genetic variability in both traits signifies the presence of underlying genomic variability. The objective of the present study was to locate regions of the genome, and by extension putative genes and mutations, that are likely to be underpinning the genetic variability in direct calving difficulty (DCD), maternal calving difficulty (MCD), and PM. Imputed whole-genome single-nucleotide polymorphism (SNP) data on up to 8,304 Angus (AA), 17,175 Charolais (CH), 16,794 Limousin (LM), and 18,474 Holstein-Friesian (HF) sires representing 5,866,712 calving events from descendants were used. Several putative quantitative trait loci (QTL) regions associated with calving performance both within and across dairy and beef breeds were identified, although the majority were both breed- and trait-specific. QTL surrounding and encompassing the myostatin (MSTN) gene were associated (P < 5 × 10−8) with DCD and PM in both the CH and LM populations. The well-known Q204X mutation was the fifth strongest association with DCD in the CH population and accounted for 5.09% of the genetic variance in DCD. In contrast, none of the 259 segregating variants in MSTN were associated (P > × 10−6) with DCD in the LM population but a genomic region 617 kb downstream of MSTN was associated (P < 5 × 10−8). The genetic architecture for DCD differed in the HF population relative to the CH and LM, where two QTL encompassing ZNF613 on Bos taurus autosome (BTA)18 and PLAG1 on BTA14 were identified in the former. Pleiotropic SNP associated with all three calving performance traits were also identified in the three beef breeds; 5 SNP were pleiotropic in AA, 116 in LM, and 882 in CH but no SNP was associated with more than one trait within the HF population. The majority of these pleiotropic SNP were on BTA2 surrounding MSTN and were associated with both DCD and PM. Multiple previously reported, but also novel QTL, associated with calving performance were detected in this large study. These also included QTL regions harboring SNP with the same direction of allele substitution effect for both DCD and MCD thus contributing to a more effective simultaneous selection for both traits.
  • On-farm net benefit of genotyping candidate female replacement cattle and sheep

    Newton, J.E.; Berry, Donagh; Science Foundation Ireland; Department of Agriculture, Food and the Marine; European Union; 16/RC/3835; 727213 (Elsevier BV, 2020-12-07)
    The net benefit from investing in any technology is a function of the cost of implementation and the expected return in revenue. The objective of the present study was to quantify, using deterministic equations, the net monetary benefit from investing in genotyping of commercial females. Three case studies were presented reflecting dairy cows, beef cows and ewes based on Irish population parameters; sensitivity analyses were also performed. Parameters considered in the sensitivity analyses included the accuracy of genomic evaluations, replacement rate, proportion of female selection candidates retained as replacements, the cost of genotyping, the sire parentage error rate and the age of the female when it first gave birth. Results were presented as an annualised monetary net benefit over the lifetime of an individual, after discounting for the timing of expressions. In the base scenarios, the net benefit was greatest for dairy, followed by beef and then sheep. The net benefit improved as the reliability of the genomic evaluations improved and, in fact, a negative net benefit of genotyping was less frequent when the reliability of the genomic evaluations was high. The impact of a 10% point increase in genomic reliability was, however, greatest in sheep, followed by beef and then dairy. The net benefit of genotyping female selection candidates reduced as replacement rate increased. As genotyping costs increased, the net benefit reduced irrespective of the percentage of selection candidates kept, the replacement rate or even the population considered. Nonetheless, the association between the genotyping cost and the net benefit of genotyping differed by the percentage of selection candidates kept. Across all replacement rates evaluated, retaining 25% of the selection candidates resulted in the greatest net benefit when genotyping cost was low but the lowest net benefit when genotyping cost was high. Genotyping breakeven cost was non-linearly associated with the percentage of selection candidates retained, reaching a maximum when 50% of selection candidates were retained, irrespective of replacement rate, genomic reliability or the population. The genotyping breakeven cost was also non-linearly associated with replacement rate. The approaches outlined within provide the back-end framework for a decision support tool to quantify the net benefit of genotyping, once parameterised by the relevant population metrics.
  • Improving robustness and accuracy of predicted daily methane emissions of dairy cows using milk mid‐infrared spectra

    Vanlierde, Amélie; Dehareng, Frédéric; Gengler, Nicolas; Froidmont, Eric; McParland, Sinead; Kreuzer, Michael; Bell, Matthew; Lund, Peter; Martin, Cécile; Kuhla, Björn; et al. (Wiley, 2020-11-22)
    BACKGROUND A robust proxy for estimating methane (CH4) emissions of individual dairy cows would be valuable especially for selective breeding. This study aimed to improve the robustness and accuracy of prediction models that estimate daily CH4 emissions from milk Fourier transform mid‐infrared (FT‐MIR) spectra by (i) increasing the reference dataset and (ii) adjusting for routinely recorded phenotypic information. Prediction equations for CH4 were developed using a combined dataset including daily CH4 measurements (n = 1089; g d−1) collected using the SF6 tracer technique (n = 513) and measurements using respiration chambers (RC, n = 576). Furthermore, in addition to the milk FT‐MIR spectra, the variables of milk yield (MY) on the test day, parity (P) and breed (B) of cows were included in the regression analysis as explanatory variables. RESULTS Models developed based on a combined RC and SF6 dataset predicted the expected pattern in CH4 values (in g d−1) during a lactation cycle, namely an increase during the first weeks after calving followed by a gradual decrease until the end of lactation. The model including MY, P and B information provided the best prediction results (cross‐validation statistics: R2 = 0.68 and standard error = 57 g CH4 d−1). CONCLUSIONS The models developed accounted for more of the observed variability in CH4 emissions than previously developed models and thus were considered more robust. This approach is suitable for large‐scale studies (e.g. animal genetic evaluation) where robustness is paramount for accurate predictions across a range of animal conditions. © 2020 Society of Chemical Industry
  • A comparison of 4 different machine learning algorithms to predict lactoferrin content in bovine milk from mid-infrared spectra

    Soyeurt, H.; Grelet, C.; McParland, Sinead; Calmels, M.; Coffey, M.; Tedde, A.; Delhez, P.; Dehareng, F.; Gengler, N.; European Union; et al. (American Dairy Science Association, 2020-10-22)
    Lactoferrin (LF) is a glycoprotein naturally present in milk. Its content varies throughout lactation, but also with mastitis; therefore it is a potential additional indicator of udder health beyond somatic cell count. Condequently, there is an interest in quantifying this biomolecule routinely. First prediction equations proposed in the literature to predict the content in milk using milk mid-infrared spectrometry were built using partial least square regression (PLSR) due to the limited size of the data set. Thanks to a large data set, the current study aimed to test 4 different machine learning algorithms using a large data set comprising 6,619 records collected across different herds, breeds, and countries. The first algorithm was a PLSR, as used in past investigations. The second and third algorithms used partial least square (PLS) factors combined with a linear and polynomial support vector regression (PLS + SVR). The fourth algorithm also used PLS factors, but included in an artificial neural network with 1 hidden layer (PLS + ANN). The training and validation sets comprised 5,541 and 836 records, respectively. Even if the calibration prediction performances were the best for PLS + polynomial SVR, their validation prediction performances were the worst. The 3 other algorithms had similar validation performances. Indeed, the validation root mean squared error (RMSE) ranged between 162.17 and 166.75 mg/L of milk. However, the lower standard deviation of cross-validation RMSE and the better normality of the residual distribution observed for PLS + ANN suggest that this modeling was more suitable to predict the LF content in milk from milk mid-infrared spectra (R2v = 0.60 and validation RMSE = 162.17 mg/L of milk). This PLS +ANN model was then applied to almost 6 million spectral records. The predicted LF showed the expected relationships with milk yield, somatic cell score, somatic cell count, and stage of lactation. The model tended to underestimate high LF values (higher than 600 mg/L of milk). However, if the prediction threshold was set to 500 mg/L, 82% of samples from the validation having a content of LF higher than 600 mg/L were detected. Future research should aim to increase the number of those extremely high LF records in the calibration set.
  • The Effect of Compositional Changes Due to Seasonal Variation on Milk Density and the Determination of Season-Based Density Conversion Factors for Use in the Dairy Industry

    Parmar, Puneet; Lopez-Villalobos, Nicolas; Tobin, John T.; Murphy, Eoin; McDonagh, Arleen; Crowley, Shane V.; Kelly, Alan L.; Shalloo, Laurence; Enterprise Ireland; Science Foundation Ireland; et al. (MDPI AG, 2020-07-27)
    The objective of this study was to determine the effect of seasonal variation on milk composition and establish an algorithm to predict density based on milk composition to enable the calculation of season-based density conversion calculations. A total of 1035 raw whole milk samples were collected from morning and evening milking of 60 spring-calving individual cows of different genetic groups, namely Jersey, Elite HF (Holstein–Friesian) and National Average HF, once every two weeks for a period of 9 months (March–November, 2018). The average mean and standard deviation for milk compositional traits were 4.72 ± 1.30% fat, 3.85 ± 0.61% protein and 4.69 ± 0.30% lactose and density was estimated at 1.0308 ± 0.002 g/cm3 . The density of the milk samples was evaluated using three methods: a portable density meter, DMA 35; a standard desktop version, DMA 4500M; and an Association of Official Agricultural Chemists (AOAC) method using 100-mL glass pycnometers. Statistical analysis using a linear mixed model showed a significant difference in density of milk samples (p < 0.05) across seasonal and compositional variations adjusted for the effects of days in milk, parity, the feeding treatment, the genetic group and the measurement technique. The mean density values and standard error of mean estimated for milk samples in each season, i.e., spring, summer and autumn were 1.0304 ± 0.00008 g/cm3 , 1.0314 ± 0.00005 g/cm3 and 1.0309 ± 0.00007 g/cm3 , respectively.
  • Fertility of frozen sex-sorted sperm at 4 × 106 sperm per dose in lactating dairy cows in seasonal-calving pasture-based herds

    Maicas, C.; Holden, S.A.; Drake, E.; Cromie, A.R.; Lonergan, P.; Butler, S.T.; Irish Dairy Levy Trust; Munster Bovine; Meat Industry Ireland; Glanbia; et al. (American Dairy Science Association, 2019-09-23)
    The objective was to evaluate the reproductive performance of frozen sex-sorted sperm at 4 × 106 sperm per dose (SexedULTRA 4M, Sexing Technologies, Navasota, TX) relative to frozen conventional sperm in seasonal-calving pasture-based dairy cows. Semen from Holstein-Friesian (n = 8) and Jersey (n = 2) bulls was used. Four of the Holstein bulls used were resident at or near a sex-sorting laboratory (Cogent, UK, or ST Benelux, the Netherlands). The remaining 6 bulls were located at studs in Ireland. For these 6 bulls, ejaculates were collected, diluted with transport medium, and couriered to Cogent in parcel shippers. Transit time from ejaculation to arrival at the sorting laboratory was 6 to 7 h. For all bulls, ejaculates were split and processed to provide frozen conventional sperm (CONV) at 15 × 106 sperm per straw and frozen sex-sorted (SS) sperm at 4 × 106 sperm per straw and used to inseminate lactating dairy cows after spontaneous estrus. Pregnancy diagnosis was performed by ultrasound scanning (n = 7,246 records available for analysis). Generalized linear mixed models were used to examine effects on pregnancy per AI (P/AI) at first artificial insemination, with sperm treatment (CONV vs. SS), bull (n = 10), and treatment × bull interaction as the fixed effects, and herd (n = 142) as a random effect. Overall, P/ AI was greater for cows inseminated with CONV than for those inseminated with SS (59.9% vs. 45.5%; 76.0% relative to CONV). This study was not designed to compare resident bulls vs. shipped ejaculates, but the magnitude of the difference between P/AI achieved by CONV and SS was apparently less for resident bulls (60.3% vs. 50.2%) than for shipped ejaculates (58.6% vs. 40.7%). We discovered a treatment × bull interaction for shipped ejaculates (P/AI ranged from 45 to 86% relative to CONV) but not for the resident bulls (P/AI ranged from 81 to 87% relative to CONV). Relative P/AI of SS compared with CONV was greater in cows with high or average fertility potential (76.1% and 78.3%, respectively) than in cows with low fertility potential (58.1%). In 33.1% of the enrolled herds, the P/AI achieved with SS was 90% or more of the P/ AI achieved with CONV; this was mainly explained by herds in which SS performed exceptionally well but CONV performed poorly. In conclusion, SS had lower overall P/AI compared with CONV; however, P/AI achieved with SS was dependent on the bull, fertility potential of the cow, and herd. Strategies to improve the P/AI with SS in seasonal-calving pasture-based lactating dairy cows require further research.
  • Associations between postpartum phenotypes, cow factors, genetic traits, and reproductive performance in seasonal-calving, pasture-based lactating dairy cows

    Rojas Canadas, E.; Herlihy, M.M.; Kenneally, J.; Grant, J.; Kearney, F.; Lonergan, P.; Butler, S.T.; Department of Agriculture, Food and the Marine; RSF 13S528 (American Dairy Science Association, 2020-01)
    The objective of this study was to evaluate associations between corpus luteum (CL) status, uterine health, body condition score (BCS), metabolic status, parity, genetic merit for fertility traits, and reproductive performance in pasture-based dairy cows managed for seasonal reproduction. First- and second-lactation (n = 2,600) spring-calving dairy cows from 35 dairy farms located in Ireland were enrolled in the study. Farms were visited every 2 wk, and animals that were at wk 3 (range: 14–27 d in milk) and wk 7 (range: 42–55 d in milk) postpartum were examined. Body condition score was measured using a 1-to-5 scale in 0.25-point increments. Transrectal ultrasound examination was performed at wk 3 and 7 postpartum to determine presence or absence of CL and ultrasound reproductive tract score (scale of G1–G4). Blood samples were collected at each visit, and the concentrations of glucose, β-hydroxybutyrate (BHB), and fatty acids (FA) were analyzed using enzymatic colorimetry. Animals were grouped into 3 BCS categories [low (≤2.5), target (2.75–3.25), and high (≥3.5)], 2 CL categories (present or absent), 2 uterine health status categories (normal or abnormal), and 3 metabolic status categories [good (high glucose, low FA and BHB), poor (low glucose, high FA and BHB), and moderate (all other combinations)]. Fisher's exact test was used to test for associations between variables and was supplemented by logistic regression. More cows with a CL at wk 7 were served during the first 21 d of the breeding period compared with cows without a CL. Cows classified as having a uterine score of G3 or G4 at wk 3 and 7 had lower odds of pregnancy establishment during the breeding period compared with animals with a uterine score of G1 or G2. Animals with low BCS at wk 7 had lower odds of pregnancy establishment than cows with a target BCS. Cows classified as having good metabolic status at both wk 3 and wk 7 had greater odds of pregnancy establishment during the first 21 d of the breeding season than those classified as having poor metabolic status. Overall, primiparous cows had greater reproductive performance than second-parity cows. Animals in the quartiles with the best predicted transmitting ability for survival and calving interval had better reproductive performance compared with animals in the other quartiles. Cows that had better genetic merit for fertility traits and good metabolic status, achieved target BCS, and had a favorable ultrasound reproductive tract score and a CL present at wk 7 postpartum had superior reproductive performance.
  • Associations between postpartum fertility phenotypes and genetic traits in seasonal-calving, pasture-based lactating dairy cows

    Rojas Canadas, E.; Herlihy, M.M.; Kenneally, J.; Grant, J.; Kearney, F.; Lonergan, P.; Butler, Stephen; Department of Agriculture, Food and the Marine; RSF13S528 (Elsevier for American Dairy Science Association, 2019-10-01)
    The objective of this study was to evaluate the associations between corpus luteum (CL) status, uterine health, body condition score (BCS), metabolic status, and parity at wk 3 and 7 postpartum in seasonal-calving, pasture-based, lactating dairy cows. The associations between those phenotypes and individual genetic traits were also evaluated. First- and second-parity spring-calving lactating dairy cows (n = 2,600) from 35 dairy farms in Ireland were enrolled. Farms were visited every 2 weeks; cows that were at wk 3 (range 14 to 27 DIM) and wk 7 (range 42 to 55 DIM) postpartum were examined. Body condition score was measured using a scale of 1 to 5 with 0.25 increments. Transrectal ultrasound examination was performed at wk 3 and 7 postpartum to determine presence or absence of CL and ultrasound reproductive tract score. Blood samples were collected at each visit and the concentrations of glucose, β-hydroxybutyrate (BHB), and fatty acids (FA) were analyzed by using enzymatic colorimetry. Cows were grouped into 3 BCS categories [low (≤2.5), target (≥2.75 and ≤3.25), and high (≥3.5)]; 2 CL status categories: (present or absent); 2 uterine health status (UHS) categories (normal and abnormal); and 3 metabolic status categories [good (high glucose, low fatty acids and BHB), poor (low glucose, high fatty acids and BHB), and moderate (all other combinations)]. Fisher's exact test was used to test associations between variables and was supplemented by logistic regression. We found associations between UHS (wk 3 and 7), BCS (wk 3 and 7), parity (wk 3 and 7) metabolic status (wk 3), and predicted transmitting ability for calving interval (PTA for CIV; wk 3) and CL status. Cows that had abnormal UHS, low BCS, primiparity, and poor metabolic status, and were in the quartile with the greatest PTA for CIV were less likely to have had CL present at wk 3 and 7 postpartum. We also found associations between CL status (wk 3 and 7), BCS (wk 3 and 7), parity (wk 3 and 7), and PTA for CIV (wk 3) and UHS. Cows that did not have a CL present had low BCS, primiparity, and that were in the quartile with greatest PTA for CIV, had a greater risk of abnormal UHS at wk 3 and 7 postpartum. We observed strong associations between CL status, UHS, BCS, metabolic status, parity, and individual genetic traits at wk 3 and 7 postpartum in seasonal-calving, pasture-based lactating dairy cows. Achieving target BCS and good metabolic status, and selecting cows based on PTA for CIV, are all expected to increase the likelihood of hastening the resumption of estrous cyclicity and enhancing uterine health during the postpartum period.
  • Milk adulteration with acidified rennet whey: a limitation for caseinomacropeptide detection by high-performance liquid chromatography

    de Pádua Alves, Érika; de Alcântara, Anna Laura D'Amico; Guimarães, Anselmo José Klaechim; de Santana, Elsa Helena Walter; Botaro, Bruno Garcia; Fagnani, Rafael; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; Fundação Nacional de Desenvolvimento do Ensino Superior Particular (Wiley, 2018-03-02)
    BACKGROUND High‐performance liquid chromatography (HPLC) is widely employed to determine the caseinomacropeptide (CMP) index and to detect milk tampering with rennet whey. Prior to HPLC analysis, CMP is subject to a trichloracetic acid isolation, causing further soluble proteins in the sample to precipitate. On this basis, we aimed to determine whether rennet whey acidification could adversely affect the HPLC sensitivity with respect to detecting this peptide. RESULTS As hypothesized, the CMP index from milk with added acidified rennet whey was, on average, half that quantified from milk with added rennet whey. Moreover, the quantum satis of acidified whey added to milk sufficient to demonstrate a HPLC CMP > 30 mg L–1 was 94% greater than that required for this threshold to be reached with rennet whey. CONCLUSION Milk tampering with acidified rennet whey may limit the analytical sensitivity of the reversed‐phase HPLC employed for the screening of CMP and, ultimately, disguise the fraudulent addition of whey to milk. © 2017 Society of Chemical Industry
  • Intra-Group Lethal Gang Aggression in Domestic Pigs (Sus scrofa domesticus)

    Camerlink, Irene; Chou, Jen-Yun; Turner, Simon P.; European Cooperation in Science and Technology; Scottish Government Strategic Research (MDPI AG, 2020-07-28)
    Intraspecific coalitional aggression is rare among all species, especially within stable social groups. We report here numerous cases of intraspecific lethal gang aggression within stable groups of domestic pigs. The objective was to describe this extreme aggression and to identify potential causes. Management data were collected from farms with (n = 23) and without (n = 19) gang aggression. From one farm, 91 victims were assessed for skin injuries and body condition score. Lethal gang aggression was significantly associated with deep straw bedding, which may be related to various other factors. Gang aggression tended to occur more in winter, and was unrelated to genetic line, breeding company, group size or feed type. It occurred equally in female-only and mixed sex groups (male-only groups were not represented), from around eight weeks of age. Injuries typically covered the whole body and were more severe on the front of the body. Victims who survived had a lower body condition score and fewer injuries than victims found dead. There are still many unknowns as to why this abnormal social behaviour occurs and it deserves further research attention, both for its applied relevance to animal welfare as for the evolutionary background of lethal gang aggression.
  • Effect of Exposure to Seminal Plasma Through Natural Mating in Cattle on Conceptus Length and Gene Expression

    Mateo-Otero, Yentel; Sánchez, José María; Recuero, Sandra; Bagés-Arnal, Sandra; McDonald, Michael; Kenny, David A.; Yeste, Marc; Lonergan, Pat; Fernandez-Fuertes, Beatriz; European Union; et al. (Frontiers Media SA, 2020-05-12)
    A growing body of evidence suggests that paternal factors have an impact on offspring development. These studies have been mainly carried out in mice, where seminal plasma (SP) has been shown to regulate endometrial gene expression and impact embryo development and subsequent offspring health. In cattle, infusion of SP into the uterus also induces changes in endometrial gene expression, however, evidence for an effect of SP on early embryo development is lacking. In addition, during natural mating, the bull ejaculates in the vagina; hence, it is not clear whether any SP reaches the uterus in this species. Thus, the aim of the present study was to determine whether SP exposure leads to improved early embryo survival and developmental rates in cattle. To this end, Day 7 in vitro produced blastocysts were transferred to heifers (12–15 per heifer) previously mated to vasectomized bulls (n = 13 heifers) or left unmated (n = 12 heifers; control). At Day 14, heifers were slaughtered, and conceptuses were recovered to assess size, morphology and expression of candidate genes involved in different developmental pathways. Additionally, CL volume at Day 7, and weight and volume of CL at Day 14 were recorded. No effect of SP on CL volume and weight not on conceptus recovery rate was observed. However, filamentous conceptuses recovered from SP-exposed heifers were longer in comparison to the control group and differed in expression of CALM1, CITED1, DLD, HNRNPDL, PTGS2, and TGFB3. In conclusion, data indicate that female exposure to SP during natural mating can affect conceptus development in cattle. This is probably achieved through modulation of the female reproductive environment at the time of mating. Keywords: seminal plasma, embryo development, corpus luteum
  • Genomic Regions Associated With Gestation Length Detected Using Whole-Genome Sequence Data Differ Between Dairy and Beef Cattle

    Purfield, Deirdre C.; Evans, Ross D.; Carthy, Tara; Berry, Donagh; European Union; Science Foundation Ireland; 727213; 14/IA/2576; 16/RC/3835 (Frontiers Media SA, 2019-11-05)
    While many association studies exist that have attempted to relate genomic markers to phenotypic performance in cattle, very few have considered gestation length as a phenotype, and of those that did, none used whole genome sequence data from multiple breeds. The objective of the present study was therefore to relate imputed whole genome sequence data to estimated breeding values for gestation length using 22,566 sires (representing 2,262,706 progeny) of multiple breeds [Angus (AA), Charolais (CH), Holstein-Friesian (HF), and Limousin (LM)]. The associations were undertaken within breed using linear mixed models that accounted for genomic relatedness among sires; a separate association analysis was undertaken with all breeds analysed together but with breed included as a fixed effect in the model. Furthermore, the genome was divided into 500 kb segments and whether or not segments harboured a single nucleotide polymorphism (SNP) with a P ≤ 1 × 10-4 common to different combinations of breeds was determined. Putative quantitative trait loci (QTL) regions associated with gestation length were detected in all breeds; significant associations with gestation length were only detected in the HF population and in the across-breed analysis of all 22,566 sires. Twenty-five SNPs were significantly associated (P ≤ 5 × 10-8) with gestation length in the HF population. Of the 25 significant SNPs, 18 were located within three QTLs on Bos taurus autosome number (BTA) 18, six were in two QTL on BTA19, and one was located within a QTL on BTA7. The strongest association was rs381577268, a downstream variant of ZNF613 located within a QTL spanning from 58.06 to 58.19 Mb on BTA18; it accounted for 1.37% of the genetic variance in gestation length. Overall there were 11 HF animals within the edited dataset that were homozygous for the T allele at rs381577268 and these had a 3.3 day longer (P < 0.0001) estimated breeding value (EBV) for gestation length than the heterozygous animals and a 4.7 day longer (P < 0.0001) EBV for gestation length than the homozygous CC animals. The majority of the 500 kb windows harboring a SNP with a P ≤ 1 × 10-4 were unique to a single breed and no window was shared among all four breeds for gestation length, suggesting any QTLs identified are breed-specific associations.
  • Validation of an Automated Body Condition Scoring System Using 3D Imaging

    O’ Leary, Niall O’; Leso, Lorenzo; Buckley, Frank; Kenneally, Jonathon; McSweeney, Diarmuid; Shalloo, Laurence; Science Foundation Ireland; Department of Agriculture, Food and the Marine; 13/IA/1977; 16/RC/3835 (MDPI AG, 2020-06-26)
    Body condition scores (BCS) measure a cow’s fat reserves and is important for management and research. Manual BCS assessment is subjective, time-consuming, and requires trained personnel. The BodyMat F (BMF, Ingenera SA, Cureglia, Switzerland) is an automated body condition scoring system using a 3D sensor to estimate BCS. This study assesses the BMF. One hundred and three Holstein Friesian cows were assessed by the BMF and two assessors throughout a lactation. The BMF output is in the 0–5 scale commonly used in France. We develop and report the first equation to convert these scores to the 1–5 scale used by the assessors in Ireland in this study ((0–5 scale × 0.38) + 1.67 → 1–5 scale). Inter-assessor agreement as measured by Lin’s concordance of correlation was 0.67. BMF agreement with the mean of the two assessors was the same as between assessors (0.67). However, agreement was lower for extreme values, particularly in over-conditioned cows where the BMF underestimated BCS relative to the mean of the two human observers. The BMF outperformed human assessors in terms of reproducibility and thus is likely to be especially useful in research contexts. This is the second independent validation of a commercially marketed body condition scoring system as far as the authors are aware. Comparing the results here with the published evaluation of the other system, we conclude that the BMF performed as well or better.
  • Screening commercial teat disinfectants against bacteria isolated from bovine milk using disk diffusion

    Fitzpatrick, Sarah Rose; Garvey, Mary; Jordan, Kieran; Flynn, Jim; O'Brien, Bernadette; Gleeson, David; Dairy Research Ireland; Teagasc Walsh Fellowship Programme; MKLS0006; 2016054 (Veterinary World, 2019-05-06)
    Background and Aim: Teat disinfection is an important tool in reducing the incidence of bovine mastitis. Identifying the potential mastitis-causing bacterial species in milk can be the first step in choosing the correct teat disinfectant product. The objective of this study was to screen commercial teat disinfectants for inhibition against mastitis-associated bacteria isolated from various types of milk samples. Materials and Methods: Twelve commercially available teat disinfectant products were tested, against 12 mastitis-associated bacteria strains isolated from bulk tank milk samples and bacterial strains isolated from clinical (n=2) and subclinical (n=3) quarter foremilk samples using the disk diffusion method. Results: There was a significant variation (7-30 mm) in bacterial inhibition between teat disinfection products, with products containing a lactic acid combination (with chlorhexidine or salicylic acid) resulting in the greatest levels of bacterial inhibition against all tested bacteria (p<0.05). Conclusion: In this study, combined ingredients in teat disinfection products had greater levels of bacterial inhibition than when the ingredients were used individually. The disk diffusion assay is a suitable screening method to effectively differentiate the bacterial inhibition of different teat disinfectant products.
  • Fecal Microbiota Transplant From Highly Feed Efficient Donors Affects Cecal Physiology and Microbiota in Low- and High-Feed Efficient Chickens

    Metzler-Zebeli, Barbara U.; Siegerstetter, Sina-Catherine; Magowan, Elizabeth; Lawlor, Peadar G.; O′Connell, Niamh E.; Zebeli, Qendrim; European Union; 311794 (Frontiers Media SA, 2019-07-09)
    Fecal microbiota transplants (FMT) may be used to improve chicken’s feed efficiency (FE) via modulation of the intestinal microbiota and microbe-host signaling. This study investigated the effect of the administration of FMT from highly feed efficient donors early in life on the jejunal and cecal microbiota, visceral organ size, intestinal morphology, permeability, and expression of genes for nutrient transporters, barrier function and innate immune response in chickens of diverging residual feed intake (RFI; a metric for FE). Chicks (n = 110) were inoculated with the FMT or control transplant (CT) on 1, 6, and 9 days posthatch (dph), from which 56 chickens were selected on 30 dph as the extremes in RFI, resulting in 15 low and 13 high RFI chickens receiving the FMT and 14 low and 14 high RFI chickens receiving the CT. RFI rank and FMT only caused tendencies for alterations in the jejunal microbiota and only one unclassified Lachnospiraceae genus in cecal digesta was indicative of high RFI. By contrast, the FMT caused clear differences in the short-chain fatty acid (SCFA) profile in the crop and cecal microbiota composition compared to the CT, which indicated alterations in amylolytic, pullulanolytic and hemicellulolytic bacteria such as Lactobacillus, Dorea, and Ruminococcus. Moreover, the FMT caused alterations in intestinal development as indicated by the longer duodenum and shallower crypts in the ceca. From the observed RFI-associated variation, energy-saving mechanisms and moderation of the mucosal immune response were indicated by higher jejunal permeability, shorter villi in the ileum, and enhanced cecal expression of the anti-inflammatory cytokine IL10 in low RFI chickens. Relationships obtained from supervised multigroup data integration support that certain bacteria, including Ruminococcocaceae-, Lactobacillus-, and unclassified Clostridiales-phylotypes, and SCFA in jejunal and cecal digesta modulated expression levels of cytokines, tight-junction protein OCLN and nutrient transporters for glucose and SCFA uptake. In conclusion, results suggest that the intestine only played a moderate role for the RFI-associated variation of the present low and high RFI phenotypes, whereas modulating the early microbial colonization resulted in longlasting changes in bacterial taxonomic and metabolite composition as well as in host intestinal development.
  • Choice of artificial insemination beef bulls used to mate with female dairy cattle

    Berry, Donagh; Ring, S.C.; Twomey, A.J.; Evans, R.D.; Science Foundation Ireland; Department of Agriculture, Food and the Marine; 16/RC/3835 (Elsevier for American Dairy Science Association, 2020-02)
    Understanding the preferences of dairy cattle producers when selecting beef bulls for mating can help inform beef breeding programs as well as provide default parameters in mating advice systems. The objective of the present study was to characterize the genetic merit of beef artificial insemination (AI) bulls used in dairy herds, with particular reference to traits associated with both calving performance and carcass merit. The characteristics of the beef AI bulls used were compared with those of the dairy AI bulls used on the same farms. A total of 2,733,524 AI records from 928,437 females in 5,967 Irish dairy herds were used. Sire predicted transmitting ability (PTA) values and associated reliability values for calving performance and carcass traits based on national genetic evaluations from prior to the insemination were used. Fixed effects models were used to relate both genetic merit and the associated reliability of the dairy and beef bulls used on the farm with herd size, the extent of Holstein-Friesian × Jersey crossbreeding adopted by the herd, whether the herd used a technician insemination service or do-ityourself, and the parity of the female mated. The mean direct calving difficulty PTA of the beef bulls used was 1.85 units higher than that of the dairy bulls but with over 3 times greater variability in the beef bulls. This 1.85 units equates biologically to an expectation of 1.85 more dystocia events per 100 dairy cows mated in the beef × dairy matings. The mean calving difficulty PTA of the dairy AI bulls used reduced with increasing herd size, whereas the mean calving difficulty PTA of the beef AI bulls used increased as herd size increased from 75 cows or fewer to 155 cows; the largest herds (>155 cows) used notably easier-calving beef bulls, albeit the calving difficulty PTA of the beef bulls was 3.33 units versus 1.67 units for the dairy bulls used in these herds. Although we found a general tendency for larger herds to use dairy AI bulls with lower reliability, this trend was not obvious in the beef AI bulls used. Irrespective of whether dairy or beef AI bulls were considered, herds that operated more extensive Holstein-Friesian × Jersey crossbreeding (i.e., more than 50% crossbred cows) used, on average, easier calving, shorter gestationlength bulls with lighter expected progeny carcasses of poorer conformation. Mean calving difficulty PTA of dairy bulls used increased from 1.39 in heifers to 1.79 in first-parity cows and to 1.82 in second-parity cows, remaining relatively constant thereafter. In contrast, the mean calving difficulty PTA of the beef bulls used increased consistently with cow parity. Results from the present study demonstrate a clear difference in the mean acceptable genetic merit of beef AI bulls relative to dairy AI bulls but also indicates that these acceptable limits vary by herd characteristics.
  • Differences in intestinal size, structure, and function contributing to feed efficiency in broiler chickens reared at geographically distant locations

    Metzler-Zebeli, B.U.; Magowan, E.; Hollmann, M.; Ball, M.E.E.; Molnár, A.; Witter, K.; Ertl, R.; Hawken, R.J.; Lawlor, Peadar G.; O’Connell, N.E.; et al. (Elsevier BV, 2018-02)
    The contribution of the intestinal tract to differences in residual feed intake (RFI) has been inconclusively studied in chickens so far. It is also not clear if RFI-related differences in intestinal function are similar in chickens raised in different environments. The objective was to investigate differences in nutrient retention, visceral organ size, intestinal morphology, jejunal permeability and expression of genes related to barrier function, and innate immune response in chickens of diverging RFI raised at 2 locations (L1: Austria; L2: UK). The experimental protocol was similar, and the same dietary formulation was fed at the 2 locations. Individual BW and feed intake (FI) of chickens (Cobb 500FF) were recorded from d 7 of life. At 5 wk of life, chickens (L1, n = 157; L2 = 192) were ranked according to their RFI, and low, medium, and high RFI chickens were selected (n = 9/RFI group, sex, and location). RFI values were similar between locations within the same RFI group and increased by 446 and 464 g from low to high RFI in females and males, respectively. Location, but not RFI rank, affected growth, nutrient retention, size of the intestine, and jejunal disaccharidase activity. Chickens from L2 had lower total body weight gain and mucosal enzyme activity but higher nutrient retention and longer intestines than chickens at L1. Parameters determined only at L1 showed increased crypt depth in the duodenum and jejunum and enhanced paracellular permeability in low vs. high RFI females. Jejunal expression of IL1B was lower in low vs. high RFI females at L2, whereas that of TLR4 at L1 and MCT1 at both locations was higher in low vs. high RFI males. Correlation analysis between intestinal parameters and feed efficiency metrics indicated that feed conversion ratio was more correlated to intestinal size and function than was RFI. In conclusion, the rearing environment greatly affected intestinal size and function, thereby contributing to the variation in chicken RFI observed across locations.
  • A bio-economic model for cost analysis of alternative management strategies in beef finishing systems

    Kamilaris, C.; Dewhurst, R.J.; Vosough Ahmadi, B.; Crosson, Paul; Alexander, P.; SRUC PhD studentship; Teagasc Walsh Fellowship Programme; Scottish Government (Elsevier BV, 2019-10-26)
    Global population growth together with rising incomes is increasing the demand for meat-based products. This increases the need to optimize livestock production structures, whilst ensuring viable returns for the farmers. On a global scale, beef producers need tools to assist them to produce more high-quality products whilst maintaining economic efficiency. The Grange Scottish Beef Model (GSBM) was customized to simulate beef finishing enterprises using data from Scottish beef finishing studies, as well as agricultural input and output price datasets. Here we describe the model and its use to determine the cost-effectiveness of alternative current management practices (e.g. forage- and cereal-based finishing) and slaughter ages (i.e. short, medium or long finishing duration). To better understand drivers of profitability in beef finishing systems, several scenarios comparing finishing duration, gender, genetic selection of stock for growth rate or feed efficiency, as well as financial support were tested. There are opportunities for profitable and sustainable beef production in Scotland, for both cereal and forage based systems, particularly when aiming for a younger age profile at slaughtering. By careful choice of finishing systems matched to animal potential, as well as future selection of high performing and feed efficient cattle, beef finishers will be able to enhance performance and increase financial returns.
  • Cervico-vaginal mucus (CVM) – an accessible source of immunologically informative biomolecules

    Adnane, Mounir; Meade, Kieran G; O’Farrelly, Cliona; Science Foundation Ireland; Health Research Board; Department of Agriculture, Food and the Marine; 12/Ia/1667; HRA_POR/2012/37; FIRM/ RSF/CoFoRD 2013–2016: ENRICH; FIRM/RSF/CoFoRD 2011-2015 (Springer Science and Business Media LLC, 2018-08-16)
    Cervico-vaginal mucus (CVM), the product of epithelial cells lining the uterus, cervix and vagina, is secreted to facilitate uterine lubrication and microbial clearance. Predominantly composed of water and mucins, CVM also contains high levels of immuno-active proteins such as immunoglobulin A (IgA), lactoferrin and lysozyme which protect against infection by blocking adhesion and mediating microbial killing. The repertoire of cytokines, chemokines and antimicrobial peptides is predominantly generated by the secretions of endometrial epithelial cells into the uterine lumen and concentrated in the CVM. The quantity and relative proportions of these inflammatory biomarkers are affected by diverse factors including the estrus cycle and health status of the animal and therefore potentially provide important diagnostic and prognostic indicators. We propose that measuring molecular signatures in bovine CVM could be a useful approach to identifying and monitoring genital tract pathologies in beef and dairy cows.
  • Investigation of molecular mechanisms underlying tetracycline resistance in thermophilic Campylobacter spp. suggests that previous reports of tet(A)-mediated resistance in these bacteria are premature

    Lynch, Caoimhe; Hawkins, Kayleigh; Lynch, Helen; Egan, John; Bolton, Declan; Coffey, Aidan; Lucey, Brigid; Department of Agriculture, Food and the Marine; Teagasc Walsh Fellowship Programme; Ref. 15/F/641; et al. (Springer Science and Business Media LLC, 2019-11-09)
    The true prevalence of tet(A), which codes for a tetracycline efflux pump, in thermophilic Camplyobacter spp. requires clarification after reports emerged in Iran (2014) and Kenya (2016) of the novel detection of tet(A) in Campylobacter. During our investigation of antibiotic resistance mechanisms in a sample of Irish thermophilic Campylobacter broiler isolates, it was determined that 100% of tetracycline-resistant isolates (n = 119) harboured tet(O). Accessory tetracycline-resistance mechanisms were considered as tetracycline minimum inhibitory concentrations ranged from 4 to ≥ 64 mg/L. Primers previously reported for the detection of tet(A) in Campylobacter failed to produce an amplicon using a positive control strain (Escherichia coli K12 SK1592 containing the pBR322 plasmid) and a selection of Campylobacter isolates. Accordingly, we designed new tet(A)-targeting primers on SnapGene2.3.2 that successfully generated a 407 bp product from the positive control strain only. Further in silico analysis using BLASTn and SnapGene2.3.2 revealed that previously reported Campylobacter tet(A) sequences deposited on GenBank shared 100% homology with Campylobacter tet(O). We postulate that this gave rise to the erroneous report of a high tet(A) prevalence among a pool of Kenyan broiler Campylobacter isolates that were tested using primers designed based on these apparent tet(A) sequences. In conclusion, further work would be required to determine whether the homology between tet(A) potentially present in Campylobacter and known tet(A) genes would be sufficient to allow amplification using the primers designed in our study. Finally, the existence of tet(A) in thermophilic Campylobacter spp. remains to be demonstrated.

View more