• Behaviour of tail-docked lambs tested in isolation

      Marchewka, Joanna; Beltran de Heredia, Ina; Averos, Xavier; Ruiz, Roberto; Zanella, Adroaldo J.; Calderon Diaz, Julia; Estevez, Inma; European Commission; Ministry for Economic Development and Competitiveness of the Basque Government; FP7-KBBE-2010-4 (Teagasc (Agriculture and Food Development Authority), Ireland, 2016-12)
      The aims of the current study were to detect behavioural indicators of pain of tail-docked sheep tested in isolation and to determine the relationship between behaviour and the pain levels to which they were exposed. Twenty-four female lambs, randomly assigned to four pens, had their tail docked with a rubber ring (TD; n = 6) without pain control procedures, TD with anaesthesia (TDA; n = 6) or TD with anaesthesia and analgesia (TDAA; n = 6). Additionally, six lambs handled but without tail docking or application of pain relief measures were used as the control (C). On the day prior (Day –1) to the TD and on days 1, 3 and 5 post-procedure, each lamb was individually removed from its group and underwent a 2.5 min open field test in a separate pen. Frequencies of behaviours such as rest, running, standing, walking and exploring were directly observed. Frequencies of exploratory climbs (ECs) and abrupt climbs (ACs) over the testing pen’s walls were video-recorded. Data were analysed using generalised linear mixed models with repeated measurements, including treatment and day as fixed effects and behaviour on Day –1 as a linear covariate. Control and TDAA lambs stood more frequently than TD lambs. TD lambs performed significantly more ACs compared to all other treatment groups. No other treatment effects were detected. A day effect was detected for all behaviours, while the EC frequency was highest for all tail-docked lambs on Day 5. Findings suggest that standing, ACs and ECs could be used as potential indicators of pain in isolated tail-docked lambs. However, differences in ECs between treatments only appeared 3 d after tail docking.
    • Characterization of the lying and rising sequence in lame and non-lame sows

      Mumm, Jared Michael; Calderon Diaz, Julia; Stock, Joseph Daniel; Kerr Johnson, Anna; Ramirez, Alejandro; Azarpajouh, Samaneh; Stalder, Kenneth J.; National Pork Board; #15-004 (Elsevier BV, 2020-05)
      This study aimed to identify possible differences in the lying and standing sequence between lame and non-lame gestating sows. A total of 85 stall-housed sows (average parity 0.9 ± 1.14; range 0–4) were scored for walking lameness on a 3-point scale (1 = normal to 3=severely lame) while moving to a separate gestation stall for recording of one lying-standing event on days 30, 60 and 90 of gestation. A video camera was positioned on the adjacent stall so sows’ profiles were visible. Observations ceased when the sow laid-down and stood-up, or 2.5 h elapsed from recording commencement. From videos, postures and movements that occurred during lying-standing sequences were identified. Time (seconds) from kneeling to shoulder rotation (KSR), shoulder rotation to lying (SRHQ), total time to lie (TLIE); latency to lie (LATENCY; minutes) and number of attempts to successfully lie were recorded. Also, time taken from first leg fold to sit (TLS), time from sit to rise (TSR), and total time to rise (TRISE) were recorded. Sows were re-classified as non-lame (score 1) and lame (scores ≥ 2). Data were analyzed using mixed model methods with gestation day, and lameness as fixed effects and sow the random effect. On average, sows took 14.3 ± 1.39 s for KSR, 7.7 ± 0.79 s for SRHQ, 21.0 ± 1.37 s for TLIE and 63.6 ± 5.97 min for LATENCY. Furthermore, sows took 8.8 ± 2.80 s for TLS, 5.95 ± 1.73 s for TSR, and 10.3 ± 2.02 s for TRISE. There were no associations between lameness status or gestation day with time required for or the likelihood of performing the different movements of the lying and standing sequences (P >  0.05). Except for lame sows tending to sit more while transitioning from lying to standing than non-lame sows (P =  0.09). Seven different lying and 4 different standing combination deviation from the normal sequences, albeit each combination was infrequent and did not allow for statistical analysis. However, all together, deviations from the normal lying and standing sequence accounted for 22.7 % and 35 % of total observations; respectively. Under the conditions of this study, lameness did not influence the time taken or the likelihood of performing different movements and/or postures during normal lying-standing sequences. However, this could be due to lameness recorded here not being severe enough to affect the sequences. The observed deviations suggest that there is variation in the way sows lie and stand although more research is necessary to understand which factors contribute to such variation.