• Genome-wide associations for feed utilisation complex in primiparous Holstein–Friesian dairy cows from experimental research herds in four European countries

      Veerkamp, Roel F.; Coffey, Mike P.; Berry, Donagh; de Haas, Y.; Strandberg, E.; Bovenhuis, H.; Calus, M. P. L.; Wall, E.; European Union; KBBE-211708 (Cambridge University Press, 2012-06)
      Genome-wide association studies for difficult-to-measure traits are generally limited by the sample size with accurate phenotypic data. The objective of this study was to utilise data on primiparous Holstein–Friesian cows from experimental farms in Ireland, the United Kingdom, the Netherlands and Sweden to identify genomic regions associated with the feed utilisation complex: fat and protein corrected milk yield (FPCM), dry matter intake (DMI), body condition score (BCS) and live-weight (LW). Phenotypic data and 37 590 single nucleotide polymorphisms (SNPs) were available on up to 1629 animals. Genetic parameters of the traits were estimated using a linear animal model with pedigree information, and univariate genome-wide association analyses were undertaken using Bayesian stochastic search variable selection performed using Gibbs sampling. The variation in the phenotypes explained by the SNPs on each chromosome was related to the size of the chromosome and was relatively consistent for each trait with the possible exceptions of BTA4 for BCS, BTA7, BTA13, BTA14, BTA18 for LW and BTA27 for DMI. For LW, BCS, DMI and FPCM, 266, 178, 206 and 254 SNPs had a Bayes factor .3, respectively. Olfactory genes and genes involved in the sensory smell process were overrepresented in a 500 kbp window around the significant SNPs. Potential candidate genes were involved with functions linked to insulin, epidermal growth factor and tryptophan.
    • Genome-wide associations for fertility traits in Holstein–Friesian dairy cows using data from experimental research herds in four European countries

      Berry, Donagh; Bastiaansen, J. W. M.; Veerkamp, Roel F.; Wijga, S.; Wall, E.; Berglund, B.; Calus, M. P. L.; European Union; KBBE-211708 (Cambridge University Press, 2012-01)
      Genome-wide association studies for difficult-to-measure traits are generally limited by the sample population size with accurate phenotypic data. The objective of this study was to utilise data on primiparous Holstein–Friesian cows from experimental farms in Ireland, the United Kingdom, the Netherlands and Sweden to identify genomic regions associated with traditional measures of fertility, as well as a fertility phenotype derived from milk progesterone profiles. Traditional fertility measures investigated were days to first heat, days to first service, pregnancy rate to first service, number of services and calving interval (CI); post-partum interval to the commencement of luteal activity (CLA) was derived using routine milk progesterone assays. Phenotypic and genotypic data on 37 590 single nucleotide polymorphisms (SNPs) were available for up to 1570 primiparous cows. Genetic parameters were estimated using linear animal models, and univariate and bivariate genome-wide association analyses were undertaken using Bayesian stochastic search variable selection performed using Gibbs sampling. Heritability estimates of the traditional fertility traits varied from 0.03 to 0.16; the heritability for CLA was 0.13. The posterior quantitative trait locus (QTL) probabilities, across the genome, for the traditional fertility measures were all ,0.021. Posterior QTL probabilities of 0.060 and 0.045 were observed for CLA on SNPs each on chromosome 2 and chromosome 21, respectively, in the univariate analyses; these probabilities increased when CLA was included in the bivariate analyses with the traditional fertility traits. For example, in the bivariate analysis with CI, the posterior QTL probability of the two aforementioned SNPs were 0.662 and 0.123. Candidate genes in the vicinity of these SNPs are discussed. The results from this study suggest that the power of genome-wide association studies in cattle may be increased by sharing of data and also possibly by using physiological measures of the trait under investigation.
    • Genomic prediction of dry matter intake in dairy cattle from an international data set consisting of research herds in Europe, North America, and Australasia

      de Haas, Y.; Pryce, J. E.; Calus, M. P. L.; Wall, E.; Berry, Donagh; Lovendahl, P.; Krattenmacher, N.; Miglior, F.; Weigel, K.; Spurlock, D.; et al. (Elsevier for American Dairy Science Association, 2015-07)
      With the aim of increasing the accuracy of genomic estimated breeding values for dry matter intake (DMI) in Holstein-Friesian dairy cattle, data from 10 research herds in Europe, North America, and Australasia were combined. The DMI records were available on 10,701 parity 1 to 5 records from 6,953 cows, as well as on 1,784 growing heifers. Predicted DMI at 70 d in milk was used as the phenotype for the lactating animals, and the average DMI measured during a 60- to 70-d test period at approximately 200 d of age was used as the phenotype for the growing heifers. After editing, there were 583,375 genetic markers obtained from either actual high-density single nucleotide polymorphism (SNP) genotypes or imputed from 54,001 marker SNP genotypes. Genetic correlations between the populations were estimated using genomic REML. The accuracy of genomic prediction was evaluated for the following scenarios: (1) within-country only, by fixing the correlations among populations to zero, (2) using near-unity correlations among populations and assuming the same trait in each population, and (3) a sharing data scenario using estimated genetic correlations among populations. For these 3 scenarios, the data set was divided into 10 sub-populations stratified by progeny group of sires; 9 of these sub-populations were used (in turn) for the genomic prediction and the tenth was used for calculation of the accuracy (correlation adjusted for heritability). A fourth scenario to quantify the benefit for countries that do not record DMI was investigated (i.e., having an entire country as the validation population and excluding this country in the development of the genomic predictions). The optimal scenario, which was sharing data, resulted in a mean prediction accuracy of 0.44, ranging from 0.37 (Denmark) to 0.54 (the Netherlands). Assuming near-unity among-country genetic correlations, the mean accuracy of prediction dropped to 0.40, and the mean within-country accuracy was 0.30. If no records were available in a country, the accuracy based on the other populations ranged from 0.23 to 0.53 for the milking cows, but were only 0.03 and 0.19 for Australian and New Zealand heifers, respectively; the overall mean prediction accuracy was 0.37. Therefore, there is a benefit in collaboration, because phenotypic information for DMI from other countries can be used to augment the accuracy of genomic evaluations of individual countries.