• Analysis of meat quality traits and gene expression profiling of pigs divergent in residual feed intake

      Horodyska, Justyna; Oster, Michael; Reyer, Henry; Mullen, Anne Maria; Lawlor, Peadar G; Wimmers, Klaus; Hamill, Ruth; European Union Seventh Framework Programme; 311794 (Elsevier, 2017-11-20)
      Residual feed intake (RFI), the difference between actual feed intake and predicted feed requirements, is suggested to impact various aspects of meat quality. The objective of this study was to investigate the molecular mechanisms underpinning the relationship between RFI and meat quality. Technological, sensory and nutritional analysis as well as transcriptome profiling were carried out in Longissimus thoracis et lumborum muscle of pigs divergent in RFI (n = 20). Significant differences in sensory profile and texture suggest a minor impairment of meat quality in more efficient pigs. Low RFI animals had leaner carcasses, greater muscle content and altered fatty acid profiles compared to high RFI animals. Accordingly, differentially expressed genes were enriched in muscle growth and lipid & connective tissue metabolism. Differences in protein synthesis and degradation suggest a greater turnover of low RFI muscle, while divergence in connective tissue adhesion may impact tenderness. Fatty acid oxidation tending towards decrease could possibly contribute to reduced mitochondrial activity in low RFI muscle.
    • Genome-wide association analysis and functional annotation of positional candidate genes for feed conversion efficiency and growth rate in pigs

      Horodyska, Justyna; Hamill, Ruth; Varley, Patrick F.; Wimmers, Klaus; European Union; 311794 (PLOS, 12/06/2017)
      Feed conversion efficiency is a measure of how well an animal converts feed into live weight and it is typically expressed as feed conversion ratio (FCR). FCR and related traits like growth rate (e.g. days to 110 kg—D110) are of high interest for animal breeders, farmers and society due to implications on animal performance, feeding costs and environmental sustainability. The objective of this study was to identify genomic regions associated with FCR and D110 in pigs. A total of 952 terminal line boars, showing an individual variation in FCR, were genotyped using 60K SNP-Chips. Markers were tested for associations with estimated breeding values (EBV) for FCR and D110. For FCR, the largest number of associated SNPs was located on chromosomes 4 (30 SNPs), 1 (25 SNPs), X (15 SNPs) and 6 (12 SNPs). The most prominent genomic regions for D110 were identified on chromosomes 15 (10 SNPs), 1 and 4 (both 9 SNPs). The most significantly associated SNPs for FCR and D110 mapped 129.8 Kb from METTL11B (chromosome 4) and 32Kb from MBD5 (chromosome 15), respectively. A list of positional genes, closest to significantly associated SNPs, was used to identify enriched pathways and biological functions related to the QTL for both traits. A number of candidate genes were significantly overrepresented in pathways of immune cell trafficking, lymphoid tissue structure, organ morphology, endocrine system function, lipid metabolism, and energy production. After resequencing the coding region of selected positional and functional candidate genes, six SNPs were genotyped in a subset of boars. SNPs in PRKDC, SELL, NR2E1 and AKRIC3 showed significant associations with EBVs for FCR/D110. The study revealed a number of chromosomal regions and candidate genes affecting FCR/D110 and pointed to corresponding biological pathways related to lipid metabolism, olfactory reception, and also immunological status.