• Body and carcass measurements, carcass conformation and tissue distribution of high dairy genetic merit Holstein, standard dairy genetic merit Friesian and Charolais x Holstein-Friesian male cattle

      McGee, Mark; Keane, Michael G.; Neilan, R.; Moloney, Aidan P; Caffrey, Patrick J. (Teagasc, Oak Park, Carlow, Ireland, 2007)
      The increased proportion of Holstein genes in the dairy herd may have undesirable consequences for beef production in Ireland. A total of 72 spring-born calves, (24 Holstein (HO), 24 Friesian (FR) and 24 Charolais X Holstein-Friesian (CH)) were reared from calfhood to slaughter. Calves were artificially reared indoors and spent their first summer at pasture following which they were assigned to a 3 breeds (HO, FR and CH) 2 production systems (intensive 19-month bull beef and extensive 25-month steer beef) 2 slaughter weights (560 and 650 kg) factorial experiment. Body measurements of all animals were recorded at the same time before the earliest slaughter date. After slaughter, carcasses were graded and measured and the pistola hind-quarter was separated into fat, bone and muscle. HO had significantly higher values for withers height, pelvic height and chest depth than FR, which in turn had higher values than CH. HO had a longer back and a narrower chest than either FR or CH, which were not significantly different. Carcass length and depth, pistola length, and leg length were 139.2, 134.4 and 132.0 (s.e. 0.81), 52.1, 51.3 and 47.7 (s.e. 0.38), 114.4, 109.0 and 107.0 (s.e. 0.65) and 76.7, 71.9 and 71.4 (s.e. 0.44) cm for HO, FR and CH, respectively. Breed differences in pistola tissue distribution between the joints were small and confined to the distal pelvic limb and ribs. There were relatively small breed differences in the distribution of pistola muscle weight between individual muscles. Body measurements were significantly greater for animals on the intensive system (bulls) than the extensive system (steers) in absolute terms, but the opposite was so when they were expressed relative to live weight. The only significant difference in relative carcass measurements between the production systems was for carcass depth, which was lower for the intensive compared with the extensive system. Increasing slaughter weight significantly increased all carcass measurements in absolute terms but reduced them relative to weight. It is concluded that there were large differences between the breed types in body and carcass measurements, and hence in carcass shape and compactness but differences in tissue distribution were small.
    • Meat quality characteristics of high dairy genetic-merit Holstein, standard dairy genetic-merit Friesian and Charolais x Holstein-Friesian steers

      McGee, Mark; Keane, M.G.; Neilan, R.; Caffrey, P.J.; Moloney, Aidan P (TeagascCompuscript Ltd, 2020-03-13)
      The increased use of Holstein genetic material in the Irish dairy herd has consequences for beef production. In all, 42 spring-born steers [14 Holsteins (HO), 14 Friesian (FR) and 14 Charolais × Holstein-Friesian (CH)] were reared to slaughter at between 26 and 37 mo of age. Carcass weight was higher and the lipid concentration of m. longissimus thoracis et lumborum was lower (P < 0.05) for CH than the dairy breeds. Overall acceptability tended to be lower (P = 0.055) while tenderness, texture and chewiness were lower (P < 0.05) for CH compared with the dairy breeds. The proportion of C16:1 in the total lipid tended to be lower (P = 0.055) for CH than the dairy breeds. Replacing male offspring of traditional “Irish” Friesian bulls with offspring from a genetically superior (from a dairy perspective) strain of Holstein bull had no commercially important impact on beef nutritional or eating quality.
    • Meat quality characteristics of high dairy genetic-merit Holstein, standard dairy genetic-merit Friesian and Charolais × Holstein-Friesian steers

      McGee, Mark; Keane, Michael G.; Neilan, R.; Caffrey, P.J.; Moloney, Aidan (Compuscript Ltd.Teagasc, 2021-03-05)
      The increased use of Holstein genetic material in the Irish dairy herd has consequences for beef production. In all, 42 spring-born steers [14 Holsteins (HO), 14 Friesian (FR) and 14 Charolais × Holstein-Friesian (CH)] were reared to slaughter at between 26 and 37 mo of age. Carcass weight was higher and the lipid concentration of m. longissimus thoracis et lumborum was lower (P < 0.05) for CH than the dairy breeds. Overall acceptability tended to be lower (P = 0.055) while tenderness, texture and chewiness were lower (P < 0.05) for CH compared with the dairy breeds. The proportion of C16:1 in the total lipid tended to be lower (P = 0.055) for CH than the dairy breeds. Replacing male offspring of traditional “Irish” Friesian bulls with offspring from a genetically superior (from a dairy perspective) strain of Holstein bull had no commercially important impact on beef nutritional or eating quality.
    • Non-carcass parts and carcass composition of high dairy genetic merit Holstein, standard dairy genetic merit Friesian and Charolais × Holstein-Friesian steers

      McGee, Mark; Keane, Michael G.; Neilan, R.; Moloney, Aidan P; Caffrey, Patrick J. (Teagasc, Oak Park, Carlow, Ireland, 2008)
      The increased use of Holstein genetic material in the dairy herd has consequences for beef production. A total of 24 spring-born calves comprising 8 Holsteins (HO), 8 Friesians (FR) and 8 Charolais × Holstein-Friesians (CH) were reared from calfhood to slaughter. At the end of the second grazing season they were assigned to a 3 (breeds; HO, FR and CH) × 2 (slaughter weights; 620 and 730 kg) factorial experiment and fin¬ished indoors. After slaughter carcasses were classified for conformation and fatness, all organs and non-carcass parts were weighed, and the right side of each carcass was dissected into fat, bone and muscle. Non-carcass parts, carcass weight, kill-out propor¬tion, carcass conformation score and m. longissimus area were 405, 398 and 368 (s.e. 8.31) g/kg empty body weight, 355, 344 and 383 (s.e. 9.4) kg, 509, 520 and 545 (s.e. 8.99) g/kg, 1.0, 2.0 and 3.1 (s.e. 0.16), 7616, 7096 and 9286 (s.e. 223.4) mm2 for HO, FR and CH, respectively. Corresponding proportions of carcass muscle and fat were 631, 614 and 656 (s.e. 8.4), and 165, 200 and 165 (s.e. 10.5) g/kg. Increasing slaughter weight increased the proportion of total non-carcass parts, carcass weight, carcass fat score and fat proportion, and reduced carcass muscle and bone proportions. It is concluded that differences in kill-out proportion between the two dairy breeds was primarily due to the lower proportion of gastrointestinal tract (GIT) in FR, and the higher kill-out proportion of CH was mainly due to lower proportions of GIT, internal organs and internal fat. In terms of beef production, HO and FR were broadly comparable for most traits except carcass conformation score and carcass fat proportion, which were lower for HO. CH was superior to the dairy breeds in all important production traits.
    • Production and carcass traits of high dairy genetic merit Holstein, standard dairy genetic merit Friesian and Charolais × Holstein-Friesian male cattle

      McGee, Mark; Keane, Michael G.; Neilan, R.; Moloney, Aidan P; Caffrey, Patrick J. (Teagasc (Agriculture and Food Development Authority), Ireland, 2005)
      The increased proportion of Holstein genetic material in the dairy herd has consequences for beef production in Ireland. A total of 72 spring-born male calves (24 Holsteins (HO), 24 Friesian (FR) and 24 Charolais × Holstein-Friesians (CH)) were reared from calfhood to slaughter. Calves were artificially reared indoors and spent their first summer at pasture following which they were assigned, on a breed basis, to a factorial combination of two production systems (intensive 19-month bull beef and extensive 25-month steer beef) and two slaughter weights (560 and 650 kg). After slaughter the pistola hind quarter was separated into fat, bone and muscle. Live-weight gain, carcass gain, kill-out proportion, carcass conformation and carcass fat scores were 830, 811 and 859 (s.e. 14.9) g/day, 540, 533, 585 (s.e. 7.7) g/day, 526, 538 and 561 (s.e. 3.0) g/kg, 1.51, 2.18 and 2.96 (s.e. 0.085), and 3.40, 4.25 and 4.06 (s.e. 0.104) for HO, FR and CH, respectively. Corresponding values for pistola weight as a proportion of carcass weight, pistola muscle proportion and pistola fat proportion were 458, 459 and 461 (s.e. 2.6) g/kg, 657, 645 and 667 (s.e. 3.7) g/kg, and 132, 161 and 145 (s.e. 4.1) g/kg. Compared with the intensive system, animals on the extensive system had a lower (P < 0.001) daily live-weight gain, kill-out proportion and a lower muscle proportion in the pistola. Increasing slaughter weight increased (P < 0.001) carcass weight and carcass fat score and reduced the proportion of muscle in the pistola. Allometric regression coefficients for pistola weight on side weight, and total bone, muscle and fat weights on pistola weight were 0.898, 0.755, 0.900 and 1.910 respectively. It is concluded that HO grew at least as fast as FR but had a lower killout proportion. Carcass conformation and fat scores were greater for FR than for HO and muscle proportion in the pistola was lower and total fat proportion was higher. Compared with FR, CH had heavier carcasses, a higher kill-out proportion and less fat and more muscle in the pistola.