• On-farm net benefit of genotyping candidate female replacement cattle and sheep

      Newton, J.E.; Berry, Donagh; Science Foundation Ireland; Department of Agriculture, Food and the Marine; European Union; 16/RC/3835; 727213 (Elsevier BV, 2020-12-07)
      The net benefit from investing in any technology is a function of the cost of implementation and the expected return in revenue. The objective of the present study was to quantify, using deterministic equations, the net monetary benefit from investing in genotyping of commercial females. Three case studies were presented reflecting dairy cows, beef cows and ewes based on Irish population parameters; sensitivity analyses were also performed. Parameters considered in the sensitivity analyses included the accuracy of genomic evaluations, replacement rate, proportion of female selection candidates retained as replacements, the cost of genotyping, the sire parentage error rate and the age of the female when it first gave birth. Results were presented as an annualised monetary net benefit over the lifetime of an individual, after discounting for the timing of expressions. In the base scenarios, the net benefit was greatest for dairy, followed by beef and then sheep. The net benefit improved as the reliability of the genomic evaluations improved and, in fact, a negative net benefit of genotyping was less frequent when the reliability of the genomic evaluations was high. The impact of a 10% point increase in genomic reliability was, however, greatest in sheep, followed by beef and then dairy. The net benefit of genotyping female selection candidates reduced as replacement rate increased. As genotyping costs increased, the net benefit reduced irrespective of the percentage of selection candidates kept, the replacement rate or even the population considered. Nonetheless, the association between the genotyping cost and the net benefit of genotyping differed by the percentage of selection candidates kept. Across all replacement rates evaluated, retaining 25% of the selection candidates resulted in the greatest net benefit when genotyping cost was low but the lowest net benefit when genotyping cost was high. Genotyping breakeven cost was non-linearly associated with the percentage of selection candidates retained, reaching a maximum when 50% of selection candidates were retained, irrespective of replacement rate, genomic reliability or the population. The genotyping breakeven cost was also non-linearly associated with replacement rate. The approaches outlined within provide the back-end framework for a decision support tool to quantify the net benefit of genotyping, once parameterised by the relevant population metrics.