• Measuring labor input on pasture-based dairy farms using a smartphone

      Deming, J.; Gleeson, David E; O'Dwyer, T.; O'Brien, Bernadette; Kinsella, J.; Dairy Research Ireland; Teagasc Walsh Fellowship Programme (Elsevier, 2018-07-19)
      With the cessation of milk quotas in the European Union, dairy herd sizes increased in some countries, including Ireland, with an associated increase in labor requirement. Second to feed costs, labor has been identified as one of the highest costs on pasture-based dairy farms. Compared with other European Union countries, Ireland has historically had low milk production per labor unit; thus, optimization of labor efficiency on farm should be addressed before or concurrently with herd expansion. The objective of this study was to quantify current levels of labor input and labor efficiency on commercial pasture-based dairy farms and to identify the facilities and management practices associated with increased labor efficiency. Thirty-eight dairy farms of varying herd sizes, previously identified as labor-efficient farms, were enrolled on the study and data were collected over 3 consecutive days each month over a 12-mo period, starting in May 2015 and finishing in August of 2016. This was achieved through the use of a smartphone application. For analysis purposes, farms were categorized into 1 of 3 herd size categories (HSC): farms with <150 cows (HSC 1), 150–249 cows (HSC 2), or ≥250 cows (HSC 3). Overall farm labor input increased with HSC with 3,015, 4,499, and 6,023 h worked on HSC 1, 2, and 3, respectively. A higher proportion of work was carried out by hired staff as herd size increased. Labor efficiency was measured as total hours input to the dairy enterprise divided by herd size. Labor efficiency improved as herd size increased above 250 cows with 17.3 h/cow per yr observed for HSC 3; labor efficiency was similar for HSC 1 and 2, at 23.8 and 23.3 h/cow per yr, respectively. A large range of efficiency was observed within HSC. The labor requirements had a distinct seasonal pattern across the 3 HSC with the highest input observed in springtime (February to April) primarily due to calving and calf-care duties, milking, and winter feeding. The lowest input was observed in wintertime (November to January) when cows were dry. Particular facilities and management practices were associated with efficiency within certain tasks, the most notable in regard to milking and winter feeding practices. Additionally, the most efficient farms used contractors to perform a higher proportion of machinery work on farm than the least efficient farms.
    • Teagasc submission made in response to the Consultation Paper on Interim Review of Ireland’s Nitrates Derogation 2019

      Spink, John; Buckley, Cathal; Burgess, Edward; Daly, Karen M.; Dillon, Pat; Fenton, Owen; Horan, Brendan; Humphreys, James; Hyde, Tim; McCarthy, Brian; et al. (Teagasc, 2019-06-04)
      This submission was made in response to the consultation process run jointly by the Department of Housing, Planning, Community and Local Government (DHPCLG) and the Department of Agriculture, Food and the Marine (DAFM) inviting views and comments on proposals for the Interim Review of Ireland’s Nitrates Derogation Programme in 2019. It has been prepared by Teagasc’s Water Quality Working Group in consultation with the Gaseous Emissions Working Group. These working groups have members drawn from both the Knowledge Transfer and Research Directorates of Teagasc. It was prepared following consultation with colleagues across Teagasc using their collective knowledge and expertise in agri-environmental science and practice and the implementation of the Good Agricultural Practice (GAP) and Nitrates Derogation Regulations.