• Carcass characteristics of cattle differing in Jersey proportion

      Berry, Donagh; Judge, Michelle; Evans, R. D.; Buckley, Frank; Cromie, A. R.; Science Foundation Ireland; Department of Agriculture, Food and Marine; Meat Technology Ireland; Enterprise Ireland; 16/RC/3835; et al. (Elsevier, 2018-09-27)
      Comparison of alternative dairy (cross-)breeding programs requires full appraisals of all revenues and costs, including beef merit. Few studies exist on carcass characteristics of crossbred dairy progeny originating from dairy herds as well as their dams. The objective of the present study was to quantify, using a national database, the carcass characteristics of young animals and cows differing in their fraction of Jersey. The data set consisted of 117,593 young animals and 42,799 cows. The associations between a combination of sire and dam breed proportion (just animal breed proportion when the dependent variable was on cows) with age at slaughter (just for young animals), carcass weight, conformation, fat score, price per kilogram, and total carcass value were estimated using mixed models that accounted for covariances among herdmates of the same sex slaughtered in close proximity in time; we also accounted for age at slaughter in young animals (which was substituted with carcass weight and carcass fat score when the dependent variable was age at slaughter), animal sex, parity of the cow or dam (where relevant), and temporal effects represented by a year-by-month 2-way interaction. For young animals, the heaviest of the dairy carcasses were from the mating of a Holstein-Friesian dam and a Holstein-Friesian sire (323.34 kg), whereas the lightest carcasses were from the mating of a purebred Jersey dam to a purebred Jersey sire which were 46.31 kg lighter (standard error of the difference = 1.21 kg). The young animal carcass weight of an F1 Holstein-Friesian × Jersey cross was 20.4 to 27.0 kg less than that of a purebred Holstein-Friesian animal. The carcass conformation of a Holstein-Friesian young animal was 26% superior to that of a purebred Jersey, translating to a difference of 0.78 conformation units on a scale of 1 to 15. Purebred Holstein-Friesians produced carcasses with less fat than their purebred Jersey counterparts. The difference in carcass price per kilogram among the alternative sire-dam breed combinations investigated was minimal, although large differences existed among the different breed types for overall carcass value; the carcass value of a Holstein-Friesian animal was 20% greater than that of a Jersey animal. Purebred Jersey animals required, on average, 21 d longer to reach a given carcass weight and fat score relative to a purebred Holstein-Friesian. The difference in age at slaughter between a purebred Holstein-Friesian animal and the mating between a Holstein-Friesian sire with a Jersey dam, and vice versa, was between 7.0 and 8.9 d. A 75.8-kg difference in carcass weight existed between the carcass of a purebred Jersey cow and that of a Holstein-Friesian cow; a 50% Holstein–Friesian-50% Jersey cow had a carcass 42.0 kg lighter than that of a purebred Holstein-Friesian cow. Carcass conformation was superior in purebred Holstein-Friesian compared with purebred Jersey cows. Results from this study represent useful input parameters to populate simulation models of alternative breeding programs on dairy farms, and to help beef farmers evaluate the cost-benefit of rearing, for slaughter, animals differing in Jersey fraction.
    • The Effect of Compositional Changes Due to Seasonal Variation on Milk Density and the Determination of Season-Based Density Conversion Factors for Use in the Dairy Industry

      Parmar, Puneet; Lopez-Villalobos, Nicolas; Tobin, John T.; Murphy, Eoin; McDonagh, Arleen; Crowley, Shane V.; Kelly, Alan L.; Shalloo, Laurence; Enterprise Ireland; Science Foundation Ireland; et al. (MDPI AG, 2020-07-27)
      The objective of this study was to determine the effect of seasonal variation on milk composition and establish an algorithm to predict density based on milk composition to enable the calculation of season-based density conversion calculations. A total of 1035 raw whole milk samples were collected from morning and evening milking of 60 spring-calving individual cows of different genetic groups, namely Jersey, Elite HF (Holstein–Friesian) and National Average HF, once every two weeks for a period of 9 months (March–November, 2018). The average mean and standard deviation for milk compositional traits were 4.72 ± 1.30% fat, 3.85 ± 0.61% protein and 4.69 ± 0.30% lactose and density was estimated at 1.0308 ± 0.002 g/cm3 . The density of the milk samples was evaluated using three methods: a portable density meter, DMA 35; a standard desktop version, DMA 4500M; and an Association of Official Agricultural Chemists (AOAC) method using 100-mL glass pycnometers. Statistical analysis using a linear mixed model showed a significant difference in density of milk samples (p < 0.05) across seasonal and compositional variations adjusted for the effects of days in milk, parity, the feeding treatment, the genetic group and the measurement technique. The mean density values and standard error of mean estimated for milk samples in each season, i.e., spring, summer and autumn were 1.0304 ± 0.00008 g/cm3 , 1.0314 ± 0.00005 g/cm3 and 1.0309 ± 0.00007 g/cm3 , respectively.
    • The Effect of Dietary Supplementation with Spent Cider Yeast on the Swine Distal Gut Microbiome

      Upadrasta, Aditya; O'Sulivan, Lisa; O'Sullivan, Orla; Sexton, Noel; Lawlor, Peadar G; Hill, Colin; Fitzgerald, Gerald F; STANTON, CATHERINE; Ross, R Paul; Enterprise Ireland; et al. (PLOS, 09/10/2013)
      Background: There is an increasing need for alternatives to antibiotics for promoting animal health, given the increasing problems associated with antibiotic resistance. In this regard, we evaluated spent cider yeast as a potential probiotic for modifying the gut microbiota in weanling pigs using pyrosequencing of 16S rRNA gene libraries. Methodology and Principal Findings: Piglets aged 24–26 days were assigned to one of two study groups; control (n = 12) and treatment (n = 12). The control animals were fed with a basal diet and the treatment animals were fed with basal diet in combination with cider yeast supplement (500 ml cider yeast containing ,7.6 log CFU/ml) for 21 days. Faecal samples were collected for 16s rRNA gene compositional analysis. 16S rRNA compositional sequencing analysis of the faecal samples collected from day 0 and day 21 revealed marked differences in microbial diversity at both the phylum and genus levels between the control and treatment groups. This analysis confirmed that levels of Salmonella and Escherichia were significantly decreased in the treatment group, compared with the control (P,0.001). This data suggest a positive influence of dietary supplementation with live cider yeast on the microbial diversity of the pig distal gut. Conclusions/Significance: The effect of dietary cider yeast on porcine gut microbial communities was characterized for the first time using 16S rRNA gene compositional sequencing. Dietary cider yeast can potentially alter the gut microbiota, however such changes depend on their endogenous microbiota that causes a divergence in relative response to that given diet.
    • Effect of housing on rubber slat mats during pregnancy on the behaviour and welfare of sows in farrowing crates

      Calderon Diaz, Julia; Boyle, Laura; Teagasc Walsh Fellowship Programme; Enterprise Ireland (Teagasc (Agriculture and Food Development Authority), Ireland, 2014)
      The aim of this study was to evaluate the effect of flooring type during gestation, lameness and limb lesion scores on welfare and behaviour of sows in farrowing crates. Sixty sows group-housed during gestation in pens with solid concrete floored feeding stalls and a concrete, fully slatted group area either uncovered (CON; n = 30) or covered with 10 mm thick rubber slat mats (RUB; n = 30) were transferred to the farrowing crate at 110d of gestation (-5d). Lameness was scored on -5d and at weaning (28 d postfarrowing). Limb lesions were scored on -5d, 24 h later (-4d), 3 to 5 days post farrowing and at weaning (i.e., day 28 post farrowing). Sows were video recorded for 24 h on -5d, after the last piglet was born (FARROW) and prior to weaning. Videos were sampled every 10 min and an index of the proportion of time spent in different postures (standing [S], ventral [VL] and lateral lying [LL] and total lying) and number of postural changes was calculated. Median scores were calculated for limb lesions and classified as ≤ median or > median. Postural data were tested for normality and analysed using mixed model equations methodology. Flooring during gestation did not affect any of the variables recorded in this study. However, RUB sows tended to make more postural changes than CON sows (P = 0.10). Sows with swelling scores > median spent more time LL (68.9 vs. 63.1 ± 2.19%; P < 0.05) and less time VL (19.9 vs. 25.8 ± 2.27%; P < 0.05) than sows with swelling scores ≤ median. Time spent S and VL decreased and LL increased at FARROW compared to -5d and prior to weaning (P < 0.01). We found no effect of flooring type during gestation on welfare and behaviour in the farrowing crate. Factors such as limb lesions and adaptation to confinement (i.e., time spent inside the farrowing crate) appeared to have a greater influence on sow welfare and behaviour in farrowing crates than the flooring on which they were housed during gestation.
    • Grassland Phosphorus and Nitrogen Fertiliser Replacement value of Dairy Processing Dewatered Sludge

      Ashekuzzaman, S.M.; Forrestal, Patrick; Richards, Karl G.; Daly, Karen; Fenton, Owen; Enterprise Ireland; Dairy Industry Partners; TC2014 0016 (Elsevier, 21-11-20)
      Dairy processing sludge is currently a bio-based fertiliser being spread to grassland without knowledge pertaining to its phosphorus (P) or nitrogen (N) fertiliser replacement value. This creates uncertainty of desired crop yield achievement and unproductive nutrient recycling and also poses a great challenge to the dairy milk processing industry in promoting their food processing by-product as valuable recyclable fertiliser. Therefore four representative samples, i.e. two activated sludge (aluminium-precipitated (Al-sludge) and iron-precipitated (Fe-sludge)), and two lime-stabilised calcium-precipitated sludge (Ca1- and Ca2-sludge), were examined at field scale to assess P and N availability for crop yield and uptake in comparison to reference mineral fertilisers over one seasonal year. The field plots were set-up on a light textured clay loam soil within the optimum plant available P (Morgan's soil P index 3, i.e. medium / adequate soil P level) in two separate adjoining areas consisting of P and N availability experiments. Each experiment consisted of 40 plots (each 8×2 m2) of 10 treatments with 4 replications arranged in a randomised complete block design. All dairy sludge (40 kg-P ha−1) and mineral P treatments (rates 0–50 kg-P ha−1) produced similar yields and uptake, and crop P was not affected by sludge applications despite the presence of high Al, Ca and Fe. During the experiment there was no significant change in P index (stayed at index 3) indicating that no treatment caused a decline in P into index 2 (i.e. low soil P level), therefore replacing P removed by the crop. The only change in Morgan's P was observed in the Ca-sludge treatments, but this was due to Morgan's reagent overestimating plant available P in high Ca conditions. From N trial plots a significantly higher grass yield and N uptake was observed for Fe and both Ca-type sludge applied plots than the control (zero N) plot during the 1st harvest, while no statistical difference observed in the subsequent harvests (up to 4th harvesting). The N fertiliser replacement value (derived from mineral N response) of sludge samples was observed to be in the order of Fe (54%)>Ca2 (25%)>Ca1 (22%)>Al (8%) with greater promise of N fertiliser efficiency of Fe and Ca types. Overall these bio-based sludges show promise in recycling P and N for grassland application but longer term trials in other soil types considering other environmental aspects (losses to soil, water and air) can further optimize the management of dairy sludge as an alternative to chemical fertiliser.