• Behaviour of tail-docked lambs tested in isolation

      Marchewka, Joanna; Beltran de Heredia, Ina; Averos, Xavier; Ruiz, Roberto; Zanella, Adroaldo J.; Calderon Diaz, Julia; Estevez, Inma; European Commission; Ministry for Economic Development and Competitiveness of the Basque Government; FP7-KBBE-2010-4 (Teagasc (Agriculture and Food Development Authority), Ireland, 2016-12)
      The aims of the current study were to detect behavioural indicators of pain of tail-docked sheep tested in isolation and to determine the relationship between behaviour and the pain levels to which they were exposed. Twenty-four female lambs, randomly assigned to four pens, had their tail docked with a rubber ring (TD; n = 6) without pain control procedures, TD with anaesthesia (TDA; n = 6) or TD with anaesthesia and analgesia (TDAA; n = 6). Additionally, six lambs handled but without tail docking or application of pain relief measures were used as the control (C). On the day prior (Day –1) to the TD and on days 1, 3 and 5 post-procedure, each lamb was individually removed from its group and underwent a 2.5 min open field test in a separate pen. Frequencies of behaviours such as rest, running, standing, walking and exploring were directly observed. Frequencies of exploratory climbs (ECs) and abrupt climbs (ACs) over the testing pen’s walls were video-recorded. Data were analysed using generalised linear mixed models with repeated measurements, including treatment and day as fixed effects and behaviour on Day –1 as a linear covariate. Control and TDAA lambs stood more frequently than TD lambs. TD lambs performed significantly more ACs compared to all other treatment groups. No other treatment effects were detected. A day effect was detected for all behaviours, while the EC frequency was highest for all tail-docked lambs on Day 5. Findings suggest that standing, ACs and ECs could be used as potential indicators of pain in isolated tail-docked lambs. However, differences in ECs between treatments only appeared 3 d after tail docking.
    • Genetic parameters of dairy cow energy intake and body energy status predicted using mid-infrared spectrometry of milk

      McParland, Sinead; Kennedy, Emer; Lewis, Eva; Moore, Stephen; McCarthy, Brian; O'Donovan, Michael; Berry, Donagh; Department of Agriculture, Food and the Marine, Ireland; European Commission; Marie Curie project International Research Staff Exchange Scheme SEQSEL; et al. (Elsevier for American Dairy Science Association, 2014-12)
      Energy balance (EB) and energy intake (EI) are heritable traits of economic importance. Despite this, neither trait is explicitly included in national dairy cow breeding goals due to a lack of routinely available data from which to compute reliable breeding values. Mid-infrared (MIR) spectrometry, which is performed during routine milk recording, is an accurate predictor of both EB and EI. The objective of this study was to estimate genetic parameters of EB and EI predicted using MIR spectrometry. Measured EI and EB were available for 1,102 Irish Holstein-Friesian cows based on actual feed intake and energy sink data. A subset of these data (1,270 test-day records) was used to develop equations to predict EI, EB, and daily change in body condition score (ΔBCS) and body weight (ΔBW) using the MIR spectrum with or without milk yield also as a predictor variable. Accuracy of cross-validation of the prediction equations was 0.75, 0.73, 0.77, and 0.70 for EI, EB, ΔBCS, and ΔBW, respectively. Prediction equations were applied to additional spectral data, yielding up to 94,653 records of MIR-predicted EI, EB, ΔBCS, and ΔBW available for variance component estimation. Variance components were estimated using repeatability animal linear mixed models. Heritabilities of MIR-predicted EI, EB, ΔBCS, and ΔBW were 0.20, 0.10, 0.07, and 0.06, respectively; heritability estimates of the respective measured traits were 0.35, 0.16, 0.07, and 0.08, respectively. The genetic correlation between measured and MIR-predicted EI was 0.84 and between measured and MIR-predicted EB was 0.54, indicating that selection based on MIR-predicted EI or EB would improve true EI or EB. Genetic and phenotypic associations between EI and both the milk production and body-change traits were generally in agreement, regardless of whether measured EI or MIR-predicted EI was considered. Higher-yielding animals of higher body weight had greater EI. Predicted EB was negatively genetically correlated with milk yield (genetic correlation = −0.29) and positively genetically correlated with both milk fat and protein percent (genetic correlation = 0.17 and 0.16, respectively). Least squares means phenotypic EI of 198 animals stratified as low, average, and high estimated breeding values for MIR-predicted EI (animal phenotypes were not included in the genetic evaluation) were 154.3, 156.0, and 163.3 MJ/d, corroborating that selection on MIR-predicted EI will, on average, result in differences in phenotypic true EI.
    • Genetic parameters of ovarian and uterine reproductive traits in dairy cows

      Carthy, Tara; Ryan, Dan P.; Fitzgerald, A. M.; Evans, R. D.; Berry, Donagh; Department of Agriculture, Food and the Marine, Ireland; European Commission; 11/S/133 (Elsevier for American Dairy Science Association, 2015-04)
      The objective of the study was to estimate genetic parameters of detailed reproductive traits derived from ultrasound examination of the reproductive tract as well as their genetic correlations with traditional reproductive traits. A total of 226,141 calving and insemination records as well as 74,134 ultrasound records from Irish dairy cows were used. Traditional reproductive traits included postpartum interval to first service, conception, and next calving, as well as the interval from first to last service; number of inseminations, pregnancy rate to first service, pregnant within 42 d of the herd breeding season, and submission in the first 21 d of the herd breeding season were also available. Detailed reproductive traits included resumed cyclicity at the time of ultrasound examination, incidence of multiple ovulations, incidence of early postpartum ovulation, heat detection, ovarian cystic structures, embryo loss, and uterine score; the latter was a subjectively assessed on a scale of 1 (little fluid with normal uterine tone) to 4 (large quantity of fluid with a flaccid uterine tone). Variance (and covariance) components were estimated using repeatability animal linear mixed models. Heritability for all reproductive traits were generally low (0.001–0.05), with the exception of traits related to cyclicity postpartum, regardless if defined traditionally (0.07; calving to first service) or from ultrasound examination [resumed cyclicity at the time of examination (0.07) or early postpartum ovulation (0.10)]. The genetic correlations among the detailed reproductive traits were generally favorable. The exception was the genetic correlation (0.29) between resumed cyclicity and uterine score; superior genetic merit for cyclicity postpartum was associated with inferior uterine score. Superior genetic merit for most traditional reproductive traits was associated with superior genetic merit for resumed cyclicity (genetic correlations ranged from −0.59 to −0.36 and from 0.56 to 0.70) and uterine score (genetic correlations ranged from −0.47 to 0.32 and from 0.25 to 0.52). Genetic predisposition to an increased incidence of embryo loss was associated with both an inferior uterine score (0.24) and inferior genetic merit for traditional reproductive traits (genetic correlations ranged from −0.52 to −0.42 and from 0.33 to 0.80). The results from the present study indicate that selection based on traditional reproductive traits, such as calving interval or days open, resulted in improved genetic merit of all the detailed reproductive traits evaluated in this study. Additionally, greater accuracy of selection for calving interval is expected for a relatively small progeny group size when detailed reproductive traits are included in a multitrait genetic evaluation.
    • Genomic prediction of dry matter intake in dairy cattle from an international data set consisting of research herds in Europe, North America, and Australasia

      de Haas, Y.; Pryce, J. E.; Calus, M. P. L.; Wall, E.; Berry, Donagh; Lovendahl, P.; Krattenmacher, N.; Miglior, F.; Weigel, K.; Spurlock, D.; et al. (Elsevier for American Dairy Science Association, 2015-07)
      With the aim of increasing the accuracy of genomic estimated breeding values for dry matter intake (DMI) in Holstein-Friesian dairy cattle, data from 10 research herds in Europe, North America, and Australasia were combined. The DMI records were available on 10,701 parity 1 to 5 records from 6,953 cows, as well as on 1,784 growing heifers. Predicted DMI at 70 d in milk was used as the phenotype for the lactating animals, and the average DMI measured during a 60- to 70-d test period at approximately 200 d of age was used as the phenotype for the growing heifers. After editing, there were 583,375 genetic markers obtained from either actual high-density single nucleotide polymorphism (SNP) genotypes or imputed from 54,001 marker SNP genotypes. Genetic correlations between the populations were estimated using genomic REML. The accuracy of genomic prediction was evaluated for the following scenarios: (1) within-country only, by fixing the correlations among populations to zero, (2) using near-unity correlations among populations and assuming the same trait in each population, and (3) a sharing data scenario using estimated genetic correlations among populations. For these 3 scenarios, the data set was divided into 10 sub-populations stratified by progeny group of sires; 9 of these sub-populations were used (in turn) for the genomic prediction and the tenth was used for calculation of the accuracy (correlation adjusted for heritability). A fourth scenario to quantify the benefit for countries that do not record DMI was investigated (i.e., having an entire country as the validation population and excluding this country in the development of the genomic predictions). The optimal scenario, which was sharing data, resulted in a mean prediction accuracy of 0.44, ranging from 0.37 (Denmark) to 0.54 (the Netherlands). Assuming near-unity among-country genetic correlations, the mean accuracy of prediction dropped to 0.40, and the mean within-country accuracy was 0.30. If no records were available in a country, the accuracy based on the other populations ranged from 0.23 to 0.53 for the milking cows, but were only 0.03 and 0.19 for Australian and New Zealand heifers, respectively; the overall mean prediction accuracy was 0.37. Therefore, there is a benefit in collaboration, because phenotypic information for DMI from other countries can be used to augment the accuracy of genomic evaluations of individual countries.
    • Machine learning algorithms for the prediction of conception success to a given insemination in lactating dairy cows

      Henpstalk, K.; McParland, Sinead; Berry, Donagh; European Commission (Elsevier for American Dairy Science Association, 2015-06)
      The ability to accurately predict the conception outcome for a future mating would be of considerable benefit for producers in deciding what mating plan (i.e., expensive semen or less expensive semen) to implement for a given cow. The objective of the present study was to use herd- and cow-level factors to predict the likelihood of conception success to a given insemination (i.e., conception outcome not including embryo loss); of particular interest in the present study was the usefulness of milk mid-infrared (MIR) spectral data in augmenting the accuracy of the prediction model. A total of 4,341 insemination records with conception outcome information from 2,874 lactations on 1,789 cows from 7 research herds for the years 2009 to 2014 were available. The data set was separated into a calibration data set and a validation data set using either of 2 approaches: (1) the calibration data set contained records from all 7 farms for the years 2009 to 2011, inclusive, and the validation data set included data from the 7 farms for the years 2012 to 2014, inclusive, or (2) the calibration data set contained records from 5 farms for all 6 yr and the validation data set contained information from the other 2 farms for all 6 yr. The prediction models were developed with 8 different machine learning algorithms in the calibration data set using standard 10-times 10-fold cross-validation and also by evaluating in the validation data set. The area under curve (AUC) for the receiver operating curve varied from 0.487 to 0.675 across the different algorithms and scenarios investigated. Logistic regression was generally the best-performing algorithm. The AUC was generally inferior for the external validation data sets compared with the calibration data sets. The inclusion of milk MIR in the prediction model generally did not improve the accuracy of prediction. Despite the fair AUC for predicting conception outcome under the different scenarios investigated, the model provided a reasonable prediction of the likelihood of conception success when the high predicted probability instances were considered; a conception rate of 85% was evident in the top 10% of inseminations ranked on predicted probability of conception success in the validation data set.
    • Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals

      Bouwman, Aniek C.; Hayes, Ben J.; Purfield, Deirdre C; Berry, Donagh; Chamberlain, Amanda J.; Hurtado Ponce, Carla; Sargolzaei, Mehdi; Schenkel, Flavio S.; Sahana, Goutam; Govignon-Gion, Armelle; et al. (Nature Publishing Group, 2018-02-19)
      Stature is affected by many polymorphisms of small effect in humans1. In contrast, variation in dogs, even within breeds, has been suggested to be largely due to variants in a small number of genes2,3. Here we use data from cattle to compare the genetic architecture of stature to those in humans and dogs. We conducted a meta-analysis for stature using 58,265 cattle from 17 populations with 25.4 million imputed whole-genome sequence variants. Results showed that the genetic architecture of stature in cattle is similar to that in humans, as the lead variants in 163 significantly associated genomic regions (P < 5 × 10−8) explained at most 13.8% of the phenotypic variance. Most of these variants were noncoding, including variants that were also expression quantitative trait loci (eQTLs) and in ChIP–seq peaks. There was significant overlap in loci for stature with humans and dogs, suggesting that a set of common genes regulates body size in mammals.
    • Prediction of bovine milk technological traits from mid-infrared spectroscopy analysis in dairy cows

      Visentin, G.; McDermott, A.; McParland, Sinead; Berry, Donagh; Kenny, Owen; Brodkorb, Andre; Fenelon, Mark; de Marchi, M.; European Commission (Elsevier for American Dairy Science Association, 2015-07)
      Rapid, cost-effective monitoring of milk technological traits is a significant challenge for dairy industries specialized in cheese manufacturing. The objective of the present study was to investigate the ability of mid-infrared spectroscopy to predict rennet coagulation time, curd-firming time, curd firmness at 30 and 60 min after rennet addition, heat coagulation time, casein micelle size, and pH in cow milk samples, and to quantify associations between these milk technological traits and conventional milk quality traits. Samples (n = 713) were collected from 605 cows from multiple herds; the samples represented multiple breeds, stages of lactation, parities, and milking times. Reference analyses were undertaken in accordance with standardized methods, and mid-infrared spectra in the range of 900 to 5,000 cm−1 were available for all samples. Prediction models were developed using partial least squares regression, and prediction accuracy was based on both cross and external validation. The proportion of variance explained by the prediction models in external validation was greatest for pH (71%), followed by rennet coagulation time (55%) and milk heat coagulation time (46%). Models to predict curd firmness 60 min from rennet addition and casein micelle size, however, were poor, explaining only 25 and 13%, respectively, of the total variance in each trait within external validation. On average, all prediction models tended to be unbiased. The linear regression coefficient of the reference value on the predicted value varied from 0.17 (casein micelle size regression model) to 0.83 (pH regression model) but all differed from 1. The ratio performance deviation of 1.07 (casein micelle size prediction model) to 1.79 (pH prediction model) for all prediction models in the external validation was <2, suggesting that none of the prediction models could be used for analytical purposes. With the exception of casein micelle size and curd firmness at 60 min after rennet addition, the developed prediction models may be useful as a screening method, because the concordance correlation coefficient ranged from 0.63 (heat coagulation time prediction model) to 0.84 (pH prediction model) in the external validation.