• Fertility of frozen sex-sorted sperm at 4 × 106 sperm per dose in lactating dairy cows in seasonal-calving pasture-based herds

      Maicas, C.; Holden, S.A.; Drake, E.; Cromie, A.R.; Lonergan, P.; Butler, S.T.; Irish Dairy Levy Trust; Munster Bovine; Meat Industry Ireland; Glanbia; et al. (American Dairy Science Association, 2019-09-23)
      The objective was to evaluate the reproductive performance of frozen sex-sorted sperm at 4 × 106 sperm per dose (SexedULTRA 4M, Sexing Technologies, Navasota, TX) relative to frozen conventional sperm in seasonal-calving pasture-based dairy cows. Semen from Holstein-Friesian (n = 8) and Jersey (n = 2) bulls was used. Four of the Holstein bulls used were resident at or near a sex-sorting laboratory (Cogent, UK, or ST Benelux, the Netherlands). The remaining 6 bulls were located at studs in Ireland. For these 6 bulls, ejaculates were collected, diluted with transport medium, and couriered to Cogent in parcel shippers. Transit time from ejaculation to arrival at the sorting laboratory was 6 to 7 h. For all bulls, ejaculates were split and processed to provide frozen conventional sperm (CONV) at 15 × 106 sperm per straw and frozen sex-sorted (SS) sperm at 4 × 106 sperm per straw and used to inseminate lactating dairy cows after spontaneous estrus. Pregnancy diagnosis was performed by ultrasound scanning (n = 7,246 records available for analysis). Generalized linear mixed models were used to examine effects on pregnancy per AI (P/AI) at first artificial insemination, with sperm treatment (CONV vs. SS), bull (n = 10), and treatment × bull interaction as the fixed effects, and herd (n = 142) as a random effect. Overall, P/ AI was greater for cows inseminated with CONV than for those inseminated with SS (59.9% vs. 45.5%; 76.0% relative to CONV). This study was not designed to compare resident bulls vs. shipped ejaculates, but the magnitude of the difference between P/AI achieved by CONV and SS was apparently less for resident bulls (60.3% vs. 50.2%) than for shipped ejaculates (58.6% vs. 40.7%). We discovered a treatment × bull interaction for shipped ejaculates (P/AI ranged from 45 to 86% relative to CONV) but not for the resident bulls (P/AI ranged from 81 to 87% relative to CONV). Relative P/AI of SS compared with CONV was greater in cows with high or average fertility potential (76.1% and 78.3%, respectively) than in cows with low fertility potential (58.1%). In 33.1% of the enrolled herds, the P/AI achieved with SS was 90% or more of the P/ AI achieved with CONV; this was mainly explained by herds in which SS performed exceptionally well but CONV performed poorly. In conclusion, SS had lower overall P/AI compared with CONV; however, P/AI achieved with SS was dependent on the bull, fertility potential of the cow, and herd. Strategies to improve the P/AI with SS in seasonal-calving pasture-based lactating dairy cows require further research.
    • Fertility of frozen sex-sorted sperm at 4 × 106 sperm per dose in lactating dairy cows in seasonal-calving pasture-based herds

      Maicas, C.; Holden, S.A.; Drake, E.; Cromie, A.R.; Lonergan, P.; Butler, S.T.; Irish Dairy Levy Trust; Munster Bovine; Meat Industry Ireland; Glanbia; et al. (American Dairy Science Association, 2020-01)
      The objective was to evaluate the reproductive performance of frozen sex-sorted sperm at 4 × 106 sperm per dose (SexedULTRA 4M, Sexing Technologies, Navasota, TX) relative to frozen conventional sperm in seasonal-calving pasture-based dairy cows. Semen from Holstein-Friesian (n = 8) and Jersey (n = 2) bulls was used. Four of the Holstein bulls used were resident at or near a sex-sorting laboratory (Cogent, UK, or ST Benelux, the Netherlands). The remaining 6 bulls were located at studs in Ireland. For these 6 bulls, ejaculates were collected, diluted with transport medium, and couriered to Cogent in parcel shippers. Transit time from ejaculation to arrival at the sorting laboratory was 6 to 7 h. For all bulls, ejaculates were split and processed to provide frozen conventional sperm (CONV) at 15 × 106 sperm per straw and frozen sex-sorted (SS) sperm at 4 × 106 sperm per straw and used to inseminate lactating dairy cows after spontaneous estrus. Pregnancy diagnosis was performed by ultrasound scanning (n = 7,246 records available for analysis). Generalized linear mixed models were used to examine effects on pregnancy per AI (P/AI) at first artificial insemination, with sperm treatment (CONV vs. SS), bull (n = 10), and treatment × bull interaction as the fixed effects, and herd (n = 142) as a random effect. Overall, P/AI was greater for cows inseminated with CONV than for those inseminated with SS (59.9% vs. 45.5%; 76.0% relative to CONV). This study was not designed to compare resident bulls vs. shipped ejaculates, but the magnitude of the difference between P/AI achieved by CONV and SS was apparently less for resident bulls (60.3% vs. 50.2%) than for shipped ejaculates (58.6% vs. 40.7%). We discovered a treatment × bull interaction for shipped ejaculates (P/AI ranged from 45 to 86% relative to CONV) but not for the resident bulls (P/AI ranged from 81 to 87% relative to CONV). Relative P/AI of SS compared with CONV was greater in cows with high or average fertility potential (76.1% and 78.3%, respectively) than in cows with low fertility potential (58.1%). In 33.1% of the enrolled herds, the P/AI achieved with SS was 90% or more of the P/AI achieved with CONV; this was mainly explained by herds in which SS performed exceptionally well but CONV performed poorly. In conclusion, SS had lower overall P/AI compared with CONV; however, P/AI achieved with SS was dependent on the bull, fertility potential of the cow, and herd. Strategies to improve the P/AI with SS in seasonal-calving pasture-based lactating dairy cows require further research.