• Long-term effects of prior diets, dietary transition and pregnancy on adipose gene expression in dairy heifers

      Waerp, Hilde K.; Waters, Sinead M.; McCabe, Matthew S.; Cormican, Paul; Salte, Ragnar; The Research Council of Norway; 199448 (Public Library of Science (PLoS), 2019-07-03)
      Adipose tissue is highly involved in whole-body metabolism and is the main site for lipid synthesis, storage and mobilization in ruminants. Therefore, knowledge about adipose tissue responses to different diets is important, especially in growing heifers as the feeding regimes of replacement heifers affect their future success as dairy cows. However, at gene expression level such knowledge is limited. As part of a larger feed trial, adipose tissue biopsies from 24 Norwegian Red heifers were collected at 12 months of age (12MO) and at month seven of gestation (PREG) and analyzed by next-generation mRNA sequencing. Between these two sampling points, all heifers had gone through a successful conception and a feed change from four dietary treatments of high or low energy (HE/LE) and protein (HP/LP) content (treatments LPHE, HPHE, LPLE and HPLE) to a low-energy, low-protein pregnancy feed given to all animals. Gene expression differences between different feed treatments at 12MO are described in an earlier publication from our group. The main objectives of this study were to investigate the long-term effects of diets differing in protein and energy density level on gene expression in adipose tissue of growing replacement dairy heifers. To achieve this, we examined the post-treatment effects between the treatment groups at month seven of gestation; 6 months after the termination of experimental feeding, and the long-term gene expression changes occurring in the adipose tissue between 12MO and PREG. Post-treatment group comparisons showed evidence of long-term effects of dietary treatment on adipose gene expression. Differences between protein treatments were smaller than between energy treatments. Adipose gene expression changes from 12MO to PREG were much larger for the HE than the LE treatments and seemed to mostly be explained by the characteristics of the diet change. 97 genes displayed a unidirectional expression change for all groups from 12MO to PREG, and are considered to be treatment-independent, possibly caused by pregnancy or increased age. This study provides candidate genes and key regulators for further studies on pregnancy preservation (TGFB1, CFD) and metabolic regulation and efficiency (PI3K, RICTOR, MAP4K4,) in dairy cattle.
    • RNA-seq analysis of bovine adipose tissue in heifers fed diets differing in energy and protein content

      Wærp, Hilde K. L.; Waters, Sinead M.; McCabe, Matthew S.; Cormican, Paul; Salte, Ragnar; The Research Council of Norway; TINE SA Norwegian dairies; Felleskjøpet agricultural cooperative; Animalia AS; 199448 (Public Library of Science, 2018-09-20)
      Adipose tissue is no longer considered a mere energy reserve, but a metabolically and hormonally active organ strongly associated with the regulation of whole-body metabolism. Knowledge of adipose metabolic regulatory function is of great importance in cattle management, as it affects the efficiency and manner with which an animal converts feedstuff to milk, meat and fat. However, the molecular mechanisms regulating metabolism in bovine adipose tissue are still not fully elucidated. The emergence of next-generation sequencing technologies has facilitated the analysis of metabolic function and regulation at the global gene expression level. The aim of this study was to investigate the effect of diets differing in protein and energy density level on gene expression in adipose tissue of growing replacement dairy heifers using next-generation RNA sequencing (RNAseq). Norwegian Red heifers were fed either a high- or low-protein concentrate (HP/LP) and a high- or low-energy roughage (HE/LE) diet from 3 months of age until confirmed pregnancy to give four treatments (viz, HPHE, HPLE, LPHE, LPLE) with different growth profiles. Subcutaneous adipose tissue sampled at 12 months of age was analyzed for gene expression differences using RNAseq. The largest difference in gene expression was found between LPHE and LPLE heifers, for which 1092 genes were significantly differentially expressed, representing an up-regulation of mitochondrial function, lipid, carbohydrate and amino acid metabolism as well as changes in the antioxidant system in adipose tissue of LPHE heifers. Differences between HPHE and HPLE heifers were much smaller, and dominated by genes representing NAD biosynthesis, as was the significantly differentially expressed genes (DEG) common to both HE-LE contrasts. Differences between HP and LP groups within each energy treatment were minimal. This study emphasizes the importance of transcriptional regulation of adipose tissue energy metabolism, and identifies candidate genes for further studies on early-stage obesity and glucose load in dairy cattle.