• Insulin increases 17β-estradiol production by the dominant follicle of the first postpartum follicle wave in dairy cows

      Butler, Stephen T.; Pelton, Susanne H.; Butler, W.R.; US Department of Agriculture; Teagasc Walsh Fellowship Programme; NE-161 (Bioscientifica on behalf of Society for Reproduction and Fertility, 2004-05-01)
      Prolonged anovulation following parturition has a negative impact on fertility in dairy cows. Insulin plays an important role in ovarian function in many species, and is profoundly depressed in dairy cows during early lactation. We hypothesized that hypoinsulinemia during early lactation represents a key indicator of nutritional status, resulting in delayed ovulation. Holstein cows (n = 10) were subjected to either a hyperinsulinemic–euglycemic clamp (INS) or saline infusion (CTL) for 96 h, beginning on day 10 after parturition during the first postpartum follicular wave. Insulin was infused continuously (0.3 μg/kg body weight per h) via a jugular catheter, and euglycemia was maintained by infusion of glucose. Circulating insulin concentrations were elevated 2.6-fold in INS cows compared with CTL cows (0.73 ± 0.026 vs 0.28 ± 0.026 ng/ml; P < 0.001). Insulin treatment did not affect (P > 0.05) luteinizing hormone (LH) pulse frequency, pulse amplitude or mean circulating LH. Circulating estradiol was elevated in INS cows (P < 0.01) and circulating testosterone also tended to be higher. The ratio of testosterone to estradiol was not different between treatments for the initial 30 h of infusion, but was significantly reduced thereafter in response to insulin (P < 0.01), suggesting that hyperinsulinemia increased follicular aromatase activity. Insulin treatment also resulted in reduced circulating nonesterified fatty acids, and increased circulating total and free insulin-like growth factor-I concentrations. Insulin infusion increased estradiol secretion by the dominant follicle of the first postpartum follicular wave in dairy cows, and this effect appears not to be mediated through changes in pulsatile LH release.
    • Insulin restores GH responsiveness during lactation-induced negative energy balance in dairy cattle: effects on expression of IGF-I and GH receptor 1A

      Butler, Stephen T.; Marr, A.L.; Pelton, Susanne H.; Radcliff, R.P.; Lucy, Matt C.; Butler, W.R.; US Department of Agriculture; Teagasc Walsh Fellowship Programme; NE-161 (Bioscientifica, 2003-02-01)
      Early lactation in dairy cattle is a period of severe negative energy balance (NEB) characterized by reduced blood glucose and insulin concentrations and elevated blood growth hormone (GH) concentrations. The liver is refractory to GH during NEB and this uncoupling of the GH-insulin-like growth factor (IGF) axis results in diminished plasma concentrations of IGF-I. Our objectives were to examine the effects of insulin administration during the immediate postpartum period on plasma IGF-I and GH concentrations and to examine the hepatic expression of total GH receptor (all GH receptor transcripts), GH receptor 1A (GHR 1A) and IGF-I. In addition, we examined adipose tissue for total GH receptor and IGF-I mRNA levels to establish the effects of chronic hyperinsulinemia on an insulin-responsive peripheral tissue. Holstein cows (n = 14) were subjected to either a hyperinsulinemic-euglycemic clamp (insulin; INS) or saline infusion (control; CTL) for 96 hours starting on day 10 postpartum. Insulin was infused intravenously (1µg • kg BW-1 • h-1), blood samples were collected hourly, and euglycemia was maintained by infusion of glucose. Insulin concentrations during the infusions were increased 8-fold in INS cows compared with CTL cows (2.33 ± 0.14 vs. 0.27 ± 0.14 ng/ml; P < 0.001) while blood glucose concentrations were not different between treatments (45.3 ± 2.2 vs. 42.5 ± 2.2 mg/dl; P > 0.1). Plasma IGF-I increased continuously during the insulin infusion, and reached the highest concentrations at the end of the clamp, being almost four-fold higher in INS compared with CTL cows (117 ± 4 vs. 30 ± 4 ng/ml; P < 0.001). Hepatic expression of GHR 1A and IGF-I mRNA was low in CTL cows, but was increased 3.6-fold (P < 0.05) and 6.3-fold (P < 0.001) respectively in INS cows. By contrast, in adipose tissue the changes in gene expression in response to insulin were reversed with decreases in both total GHR and IGF-I mRNA. The expression of GHR 1A and IGF-I mRNA in liver tissue were correlated in INS (r = 0.86; P < 0.05), but not CTL cows (r = 0.43; P > 0.1). Insulin appears to be a key metabolic signal in coupling the GH-IGF axis, thus orchestrating a marked elevation in circulating IGF-I concentrations.
    • MicroRNA regulation of bovine monocyte inflammatory and metabolic networks in an in vivo infection model.

      Lawless, Nathan; Reinhardt, Timothy A.; Bryan, Kenneth; Baker, Mike; Pesch, Bruce; Zimmerman, Duane; Zuelke, Kurt; Sonstegard, Tad; O'Farrelly, Cliona; Lippolis, John D.; et al. (Genetics Society of America, 2014-01-27)
      Bovine mastitis is an inflammation-driven disease of the bovine mammary gland that costs the global dairy industry several billion dollars per annum. Because disease susceptibility is a multi-factorial complex phenotype, an integrative biology approach is required to dissect the molecular networks involved. Here, we report such an approach, using next generation sequencing combined with advanced network and pathway biology methods to simultaneously profile mRNA and miRNA expression at multiple time-points (0, 12, 24, 36 and 48h) in both milk and blood FACS-isolated CD14+ monocytes from animals infected in vivo with Streptococcus uberis. More than 3,700 differentially expressed (DE) genes were identified in milk-isolated monocytes (MIMs), a key immune cell recruited to the site of infection during mastitis. Up-regulated genes were significantly enriched for inflammatory pathways, while down-regulated genes were enriched for non-glycolytic metabolic pathways. Monocyte transcriptional changes in the blood, however, were more subtle but highlighted the impact of this infection systemically. Genes up-regulated in blood-isolated-monocytes (BIMs) showed a significant association with interferon and chemokine signalling. Furthermore, twenty-six miRNAs were differentially expressed in MIMs and three in BIMs. Pathway analysis revealed that predicted targets of down-regulated miRNAs were highly enriched for roles in innate immunity (FDR < 3.4E-8) in particular TLR signalling, while up-regulated miRNAs preferentially targeted genes involved in metabolism. We conclude that during S. uberis infection miRNAs are key amplifiers of monocyte inflammatory response networks and repressors of several metabolic pathways.