• Invited review: Nitrogen in ruminant nutrition: A review of measurement techniques

      Hristov, A.N.; Bannink, A.; Crompton, L.A.; Huhtanen, P.; Kreuzer, M.; McGee, Mark; Nozière, P.; Reynolds, C.K.; Bayat, A.R.; Yáñez-Ruiz, D.R.; et al. (American Dairy Science Association, 2019-04-25)
      Nitrogen is a component of essential nutrients critical for the productivity of ruminants. If excreted in excess, N is also an important environmental pollutant contributing to acid deposition, eutrophication, human respiratory problems, and climate change. The complex microbial metabolic activity in the rumen and the effect on subsequent processes in the intestines and body tissues make the study of N metabolism in ruminants challenging compared with nonruminants. Therefore, using accurate and precise measurement techniques is imperative for obtaining reliable experimental results on N utilization by ruminants and evaluating the environmental impacts of N emission mitigation techniques. Changeover design experiments are as suitable as continuous ones for studying protein metabolism in ruminant animals, except when changes in body weight or carryover effects due to treatment are expected. Adaptation following a dietary change should be allowed for at least 2 (preferably 3) wk, and extended adaptation periods may be required if body pools can temporarily supply the nutrients studied. Dietary protein degradability in the rumen and intestines are feed characteristics determining the primary AA available to the host animal. They can be estimated using in situ, in vitro, or in vivo techniques with each having inherent advantages and disadvantages. Accurate, precise, and inexpensive laboratory assays for feed protein availability are still needed. Techniques used for direct determination of rumen microbial protein synthesis are laborious and expensive, and data variability can be unacceptably large; indirect approaches have not shown the level of accuracy required for widespread adoption. Techniques for studying postruminal digestion and absorption of nitrogenous compounds, urea recycling, and mammary AA metabolism are also laborious, expensive (especially the methods that use isotopes), and results can be variable, especially the methods based on measurements of digesta or blood flow. Volatile loss of N from feces and particularly urine can be substantial during collection, processing, and analysis of excreta, compromising the accuracy of measurements of total-tract N digestion and body N balance. In studying ruminant N metabolism, nutritionists should consider the longer term fate of manure N as well. Various techniques used to determine the effects of animal nutrition on total N, ammonia- or nitrous oxide-emitting potentials, as well as plant fertilizer value, of manure are available. Overall, methods to study ruminant N metabolism have been developed over 150 yr of animal nutrition research, but many of them are laborious and impractical for application on a large number of animals. The increasing environmental concerns associated with livestock production systems necessitate more accurate and reliable methods to determine manure N emissions in the context of feed composition and ruminant N metabolism.
    • Validation of an ear tag–based accelerometer system for detecting grazing behavior of dairy cows

      Pereira, G.M.; Heins, B.J.; O'Brien, Bernadette; McDonagh, A.; Lidauer, L.; Kickinger, F.; USDA National Institute of Food and Agriculture; Science Foundation Ireland; 2012-51300-20015 (Elsevier, 2020-02-20)
      The objective of the study was to develop a grazing algorithm for an ear tag–based accelerometer system (Smartbow GmbH, Weibern, Austria) and to validate the grazing algorithm with data from a noseband sensor. The ear tag has an acceleration sensor, a radio chip, and temperature sensor for calibration and it can monitor rumination and detect estrus and localization. To validate the ear tag, a noseband sensor (RumiWatch, Itin and Hoch GmbH, Liestal, Switzerland) was used. The noseband sensor detects pressure and acceleration patterns, and, with a software program specific to the noseband, pressure and acceleration patterns are used to classify data into eating, ruminating, drinking, and other activities. The study was conducted at the University of Minnesota West Central Research and Outreach Center (Morris, MN) and at Teagasc Animal and Grassland Research and Innovation Centre (Moorepark, Fermoy, Co. Cork, Ireland). During May and June 2017, observational data from Minnesota and Ireland were used to develop the grazing algorithm. During September 2018, data were collected by the ear tag and noseband sensor from 12 crossbred cows in Minnesota for a total of 248 h and from 9 Holstein-Friesian cows in Ireland for a total of 248 h. A 2-sided t-test was used to compare the percentage of grazing and nongrazing time recorded by the ear tag and the noseband sensor. Pearson correlations and concordance correlation coefficients (CCC) were used to evaluate associations between the ear tag and noseband sensor. The percentage of total grazing time recorded by the ear tag and by the noseband sensor was 37.0% [95% confidence interval (CI): 32.1 to 42.0] and 40.5% (95% CI: 35.5 to 45.6), respectively, in Minnesota, and 35.4% (95% CI: 30.6 to 40.2) and 36.9% (95% CI: 32.1 to 41.8), respectively, in Ireland. The ear tag and noseband sensor agreed strongly for monitoring grazing in Minnesota (r = 0.96; 95% CI: 0.94 to 0.97, CCC = 0.95) and in Ireland (r = 0.92; 95% CI: 0.90 to 0.94, CCC = 0.92). The results suggest that there is potential for the ear tag to be used on pasture-based dairy farms to support management decision-making.