• Concurrent and long-term associations between the endometrial microbiota and endometrial transcriptome in postpartum dairy cows

      Moore, Stephen; Ericsson, Aaron C.; Behura, Susanta K.; Lamberson, William R.; Evans, Timothy J.; McCabe, Matthew; Poock, Scott E.; Lucy, Matthew C.; USDA Animal Health Formula Funds; Food for the twenty-first Century program, University of Missouri; et al. (BioMed Central, 2019-05-22)
      Background Fertility in dairy cows depends on ovarian cyclicity and on uterine involution. Ovarian cyclicity and uterine involution are delayed when there is uterine dysbiosis (overgrowth of pathogenic bacteria). Fertility in dairy cows may involve a mechanism through which the uterine microbiota affects ovarian cyclicity as well as the transcriptome of the endometrium within the involuting uterus. The hypothesis was that the transcriptome of the endometrium in postpartum cows would be associated with the cyclicity status of the cow as well as the microbiota during uterine involution. The endometrium of first lactation dairy cows was sampled at 1, 5, and 9 weeks postpartum. All cows were allowed to return to cyclicity without intervention until week 5 and treated with an ovulation synchronization protocol so that sampling at week 9 was on day 13 of the estrous cycle. The endometrial microbiota was measured by 16S rRNA gene sequencing and principal component analysis. The endometrial transcriptome was measured by mRNA sequencing, differential gene expression analysis, and Ingenuity Pathway Analysis. Results The endometrial microbiota changed from week 1 to week 5 but the week 5 and week 9 microbiota were similar. The endometrial transcriptome differed for cows that were either cycling or not cycling at week 5 and cyclicity status depended in part on the endometrial microbiota. Compared with cows cycling at week 5, there were large changes in the transcriptome of cows that progressed from non-cycling at week 5 to cycling at week 9. There was evidence for concurrent and longer-term associations between the endometrial microbiota and transcriptome. The week 1 endometrial microbiota had the greatest effect on the subsequent endometrial transcriptome and this effect was greatest at week 5 and diminished by week 9. Conclusions The cumulative response of the endometrial transcriptome to the microbiota represented the combination of past microbial exposure and current microbial exposure. The endometrial transcriptome in postpartum cows, therefore, depended on the immediate and longer-term effects of the uterine microbiota that acted directly on the uterus. There may also be an indirect mechanism through which the microbiome affects the transcriptome through the restoration of ovarian cyclicity postpartum.
    • Intestinal microbiota profiles associated with low and high residual feed intake in chickens across two geographical locations

      Siegerstetter, Sina-Catherine; Schmitz-Esser, Stephan; Magowan, Elizabeth; Wetzels, Stefanie Urimare; Zebeli, Qendrim; Lawlor, Peadar G; O'Connell, Niamh E.; Metzler-Zebeli, Barbara U.; European Union; 311794 (PLOS, 2017-11-15)
      Intestinal microbe-host interactions can affect the feed efficiency (FE) of chickens. As inconsistent findings for FE-associated bacterial taxa were reported across studies, the present objective was to identify whether bacterial profiles and predicted metabolic functions that were associated with residual feed intake (RFI) and performance traits in female and male chickens were consistent across two different geographical locations. At six weeks of life, the microbiota in ileal, cecal and fecal samples of low (n = 34) and high (n = 35) RFI chickens were investigated by sequencing the V3-5 region of the 16S rRNA gene. Location-associated differences in α-diversity and relative abundances of several phyla and genera were detected. RFI-associated bacterial abundances were found at the phylum and genus level, but differed among the three intestinal sites and between males and females. Correlation analysis confirmed that, of the taxonomically classifiable bacteria, Lactobacillus (5% relative abundance) and two Lactobacillus crispatus-OTUs in feces were indicative for high RFI in females (P < 0.05). In males, Ruminococcus in cecal digesta (3.1% relative abundance) and Dorea in feces (<0.1% relative abundance) were best indicative for low RFI, whereas Acinetobacter in feces (<1.5% relative abundance) related to high RFI (P < 0.05). Predicted metabolic functions in feces of males confirmed compositional relationships as functions related to amino acid, fatty acid and vitamin metabolism correlated with low RFI, whereas an increasing abundance of bacterial signaling and interaction (i.e. cellular antigens) genes correlated with high RFI (P < 0.05). In conclusion, RFI-associated bacterial profiles could be identified across different geographical locations. Results indicated that consortia of low- abundance taxa in the ileum, ceca and feces may play a role for FE in chickens, whereby only bacterial FE-associations found in ileal and cecal digesta may serve as useful targets for dietary strategies.