• Concordance rate between copy number variants detected using either high- or medium-density single nucleotide polymorphism genotype panels and the potential of imputing copy number variants from flanking high density single nucleotide polymorphism haplotypes in cattle

      Rafter, Pierce; Gormley, Isobel C; Parnell, Andrew C; Kearney, John F; Berry, Donagh; Science Foundation Ireland; Department of Agriculture, Food and the Marine; 14/IA/2576; 16/RC/3835 (Biomed Central, 2020-03-04)
      Background The trading of individual animal genotype information often involves only the exchange of the called genotypes and not necessarily the additional information required to effectively call structural variants. The main aim here was to determine if it is possible to impute copy number variants (CNVs) using the flanking single nucleotide polymorphism (SNP) haplotype structure in cattle. While this objective was achieved using high-density genotype panels (i.e., 713,162 SNPs), a secondary objective investigated the concordance of CNVs called with this high-density genotype panel compared to CNVs called from a medium-density panel (i.e., 45,677 SNPs in the present study). This is the first study to compare CNVs called from high-density and medium-density SNP genotypes from the same animals. High (and medium-density) genotypes were available on 991 Holstein-Friesian, 1015 Charolais, and 1394 Limousin bulls. The concordance between CNVs called from the medium-density and high-density genotypes were calculated separately for each animal. A subset of CNVs which were called from the high-density genotypes was selected for imputation. Imputation was carried out separately for each breed using a set of high-density SNPs flanking the midpoint of each CNV. A CNV was deemed to be imputed correctly when the called copy number matched the imputed copy number. Results For 97.0% of CNVs called from the high-density genotypes, the corresponding genomic position on the medium-density of the animal did not contain a called CNV. The average accuracy of imputation for CNV deletions was 0.281, with a standard deviation of 0.286. The average accuracy of imputation of the CNV normal state, i.e. the absence of a CNV, was 0.982 with a standard deviation of 0.022. Two CNV duplications were imputed in the Charolais, a single CNV duplication in the Limousins, and a single CNV duplication in the Holstein-Friesians; in all cases the CNV duplications were incorrectly imputed. Conclusion The vast majority of CNVs called from the high-density genotypes were not detected using the medium-density genotypes. Furthermore, CNVs cannot be accurately predicted from flanking SNP haplotypes, at least based on the imputation algorithms routinely used in cattle, and using the SNPs currently available on the high-density genotype panel.
    • Within- and across-breed imputation of high-density genotypes in dairy and beef cattle from medium- and low-density genotypes

      Berry, Donagh; McClure, Matthew C.; Mullen, Michael P. (Wiley, 2013-12-05)
      The objective of this study was to evaluate, using three different genotype density panels, the accuracy of imputation from lower- to higher-density genotypes in dairy and beef cattle. High-density genotypes consisting of 777 962 single-nucleotide polymorphisms (SNP) were available on 3122 animals comprised of 269, 196, 710, 234, 719, 730 and 264 Angus, Belgian Blue, Charolais, Hereford, Holstein-Friesian, Limousin and Simmental bulls, respectively. Three different genotype densities were generated: low density (LD; 6501 autosomal SNPs), medium density (50K; 47 770 autosomal SNPs) and high density (HD; 735 151 autosomal SNPs). Imputation from lower- to higher-density genotype platforms was undertaken within and across breeds exploiting population-wide linkage disequilibrium. The mean allele concordance rate per breed from LD to HD when undertaken using a single breed or multiple breed reference population varied from 0.956 to 0.974 and from 0.947 to 0.967, respectively. The mean allele concordance rate per breed from 50K to HD when undertaken using a single breed or multiple breed reference population varied from 0.987 to 0.994 and from 0.987 to 0.993, respectively. The accuracy of imputation was generally greater when the reference population was solely comprised of the breed to be imputed compared to when the reference population comprised of multiple breeds, although the impact