• Genetic relationships between detailed reproductive traits and performance traits in Holstein-Friesian dairy cattle

      Carthy, Tara; Ryan, Dan P.; Fitzgerald, A. M.; Evans, R. D.; Berry, Donagh; Department of Agriculture, Food and the Marine; European Union; RSF 11/S/133 (Elsevier for American Dairy Science Association, 2015-12-17)
      The objective of the study was to estimate the genetic relationships between detailed reproductive traits derived from ultrasound examination of the reproductive tract and a range of performance traits in Holstein-Friesian dairy cows. The performance traits investigated included calving performance, milk production, somatic cell score (i.e., logarithm transformation of somatic cell count), carcass traits, and body-related linear type traits. Detailed reproductive traits included (1) resumed cyclicity at the time of examination, (2) multiple ovulations, (3) early ovulation, (4) heat detection, (5) ovarian cystic structures, (6) embryo loss, and (7) uterine score, measured on a 1 (little or no fluid with normal tone) to 4 (large quantity of fluid with a flaccid tone) scale, based on the tone of the uterine wall and the quantity of fluid present in the uterus. (Co)variance components were estimated using a repeatability animal linear mixed model. Genetic merit for greater milk, fat, and protein yield was associated with a reduced ability to resume cyclicity postpartum (genetic correlations ranged from −0.25 to −0.15). Higher genetic merit for milk yield was also associated with a greater genetic susceptibility to multiple ovulations. Genetic predisposition to elevated somatic cell score was associated with a decreased likelihood of cyclicity postpartum (genetic correlation of −0.32) and a greater risk of both multiple ovulations (genetic correlation of 0.25) and embryo loss (genetic correlation of 0.32). Greater body condition score was genetically associated with an increased likelihood of resumption of cyclicity postpartum (genetic correlation of 0.52). Genetically heavier, fatter carcasses with better conformation were also associated with an increased likelihood of resumed cyclicity by the time of examination (genetic correlations ranged from 0.24 to 0.41). Genetically heavier carcasses were associated with an inferior uterine score as well as a greater predisposition to embryo loss. Despite the overall antagonistic relationship between reproductive performance and both milk and carcass traits, not all detailed aspects of reproduction performance exhibited an antagonistic relationship.
    • Trends in milk production, calving rate and survival of cows in 14 Irish dairy herds as a result of the introgression of Holstein-Friesian genes

      Evans, R. D.; Dillon, Pat; Buckley, Frank; Berry, Donagh; Wallace, Michael; Ducrocq, V.; Garrick, Dorian J. (Cambridge University Press, 2006-08)
      Trends in milk production, calving rates, and survival were monitored on a potential 5580 primiparous and multiparous Holstein-Friesian dairy cows across 14 Irish seasonal spring-calving dairy farms between the years 1990 and 2001. Over this period calving rate to first service (CALV1) reduced by 0·96% per year (55 to 44%; P< 0·001), calving rate to first and second service (CALV12) reduced by 0·84% per year ( 77 to 70%; P< 0·001) and herd average parity number reduced by 0·10 lactation per year (4·3 to 3·5; P<0·001). The proportion of North American Holstein Friesian (NAHF) genes in the cows increased by 5·5% per year (8 to 63%; P<0·001), while pedigree index for milk yield (PIMILK) of the cows increased by 25 kg per year ( P<0·001). The predicted difference of the sires of the cows for calving interval and survival increased by 0·5 days (P<0·001) and reduced by 0·12% ( P<0·001) per year, respectively. A negative association was found between increased phenotypic milk yield, NAHF and PIMILK and reduced calving rates as assessed by CALV1 and CALV12. Increased proportion of NAHF genes exhibited a negative effect on survival ( P<0·001) whereas increased levels of heterosis had a positive impact on survival ( P<0·001). The results of the present study indicate that in seasonal calving herds in Ireland a need for direct selection on traits related to fertility and survival is required to arrest and reverse the declining trends in calving rates and survival.