• Comparing the immune response to a novel intranasal nanoparticle PLGA vaccine and a commercial BPI3V vaccine in dairy calves

      Mansoor, Fawad; Earley, Bernadette; Cassidy, Joseph P.; Markey, Bryan; Doherty, Simon; Welsh, Michael D; Teagasc Walsh Fellowship Programme (Biomed Central, 2015-08-21)
      Background There is a need to improve vaccination against respiratory pathogens in calves by stimulation of local immunity at the site of pathogen entry at an early stage in life. Ideally such a vaccine preparation would not be inhibited by the maternally derived antibodies. Additionally, localized immune response at the site of infection is also crucial to control infection at the site of entry of virus. The present study investigated the response to an intranasal bovine parainfluenza 3 virus (BPI3V) antigen preparation encapsulated in PLGA (poly dl-lactic-co-glycolide) nanoparticles in the presence of pre-existing anti-BPI3V antibodies in young calves and comparing it to a commercially available BPI3V respiratory vaccine. Results There was a significant (P < 0.05) increase in BPI3V-specific IgA in the nasal mucus of the BPI3V nanoparticle vaccine group alone. Following administration of the nanoparticle vaccine an early immune response was induced that continued to grow until the end of study and was not observed in the other treatment groups. Virus specific serum IgG response to both the nanoparticle vaccine and commercial live attenuated vaccine showed a significant (P < 0.05) rise over the period of study. However, the cell mediated immune response observed didn’t show any significant rise in any of the treatment groups. Conclusion Calves administered the intranasal nanoparticle vaccine induced significantly greater mucosal IgA responses, compared to the other treatment groups. This suggests an enhanced, sustained mucosal-based immunological response to the BPI3V nanoparticle vaccine in the face of pre-existing antibodies to BPI3V, which are encouraging and potentially useful characteristics of a candidate vaccine. However, ability of nanoparticle vaccine in eliciting cell mediated immune response needs further investigation. More sustained local mucosal immunity induced by nanoparticle vaccine has obvious potential if it translates into enhanced protective immunity in the face of virus outbreak.
    • Impact of three inactivated bovine viral diarrhoea virus vaccines on bulk milk p80 (NS3) ELISA test results in dairy herds

      Sayers, Riona; Sayers, Gearoid; Graham, David A.; Arkins, S.; Irish Dairy Levy Research Trust (Elsevier, 2015-03-25)
      Bovine viral diarrhoea virus (BVDV) is endemic in many countries and vaccines are used as a component of control and eradication strategies. Surveillance programmes to detect exposure to BVDV often incorporate the use of bulk milk (BM) testing for antibodies against BVDV p80 (NS3), but vaccination can interfere with these results. The aim of this study was to evaluate whether BVDV vaccines would confound BM testing for specific antibodies in a nationally representative group of commercial dairy farms in the Republic of Ireland. A total of 256 commercial dairy herds were included in the statistical analysis. Quarterly BM or serum samples from selected weanling heifers (unvaccinated homeborn youngstock) were assessed by ELISA for antibodies against the BVDV p80 subunit and whole virus. Wilcoxon ranksum and receiver operating characteristic (ROC) analyses were used to examine differences among groups vaccinated with one of three commercially available inactivated BVDV vaccines. Two of the three vaccines showed evidence of interference with ELISA testing of BM samples. ROC analysis highlighted that one vaccine did not reduce the discriminatory power of the BVDV p80 ELISA for identification of herds with evidence of recent BVDV circulation, when compared with unvaccinated herds; thus, administration of this vaccine would allow uncomplicated interpretation of BM ELISA test results in vaccinated seropositive herds. Seasonal differences in BM antibody results were identified, suggesting that the latter half of lactation is the most suitable time for sampling dairy herds containing predominantly spring calving cows. The results of the present study are likely to prove useful in countries allowing vaccination during or following BVDV eradication, where BM testing is required as part of the surveillance strategy.