• An observational study on passive immunity in Irish suckler beef and dairy calves: Tests for failure of passive transfer of immunity and associations with health and performance

      Todd, C. G.; McGee, Mark; Tiernan, Katie; Crosson, Paul; O’Riordan, Edward G.; McClure, J.; Lorenz, Ingrid; Earley, Bernadette; Department of Agriculture, Food and the Marine; 11/S/131 (Elsevier, 2018-07-25)
      The study objectives were to: 1) evaluate the diagnostic performance of passive immunity tests for classification of failure of passive transfer (FPT) risk, based on their relationships with calf health and performance, and 2) describe the epidemiology of morbidity and mortality in suckler beef and dairy calves under Irish conditions. A total of 1392 suckler beef calves (n = 111 farms) and 2090 dairy calves (84 farms) were included in this observational study. Blood samples were collected by jugular venipuncture. Serum samples were analysed for total IgG concentration using an ELISA assay, total protein concentration by clinical analyser (TP – CA), globulin concentration, zinc sulphate turbidity (ZST) units, total solids percentage by Brix refractometer (TS – BRIX), and total protein concentration by digital refractometer (TP – DR). Crude and cause-specific morbidity, all-cause mortality, and standardised 205-day body weight (BW) were determined. Generalised linear mixed models were used to evaluate associations between suckler beef and dairy calves for morbidity, mortality, growth and passive immunity. Receiver operating characteristic (ROC) curves were constructed to determine optimal test cut-offs for classification of health and growth outcomes. Overall, 20% of suckler beef and 30% of dairy calves were treated for at least one disease event by 6 mo. of age. Suckler beef calves had greater odds of bovine respiratory disease (BRD; odds ratio (OR), 95% confidence interval (CI): 2.8, 1.2–6.5, P = 0.01), navel infection (5.1, 1.9–13.2, P < 0.001), and joint infection/lameness (3.2, 1.3–7.8, P = 0.01) during the first 6 mo. of life than dairy calves. In addition, from birth to 6 mo. of age, suckler beef calves had greater rates of navel infection (incidence rate ratio (IRR), 95% CI: 3.3, 1.3–8.4, P = 0.01), but decreased rates of diarrhoea (0.9, 0.2–0.9, P = 0.03) compared to dairy calves. Optimal test cut-offs for classification of morbidity and mortality outcomes in suckler beef calves ranged from 8 to 9 mg/ml ELISA, 56 to 61 g/l TP – CA, 26 to 40 g/l globulin, 12 to 18 ZST units, 8.4% TS – BRIX, and 5.3 to 6.3 g/dl TP – DR. Optimal test cut-offs for classification of morbidity and growth outcomes in dairy calves ranged from 10 to 12 mg/ml ELISA, 57 to 60 g/l TP – CA, 29 to 34 g/l globulin, 19 ZST units, 7.8 to 8.4% TS – BRIX, and 5.7 to 5.9 g/dl TP – DR.
    • Short communication: Effect of feeding pooled and nonpooled high-quality colostrum on passive transfer of immunity, morbidity, and mortality in dairy calves

      King, Ailbhe; Chigerwe, Munashe; Barry, John; Murphy, John P.; Rayburn, Maire C.; Kennedy, Emer; University of California Davis (American Dairy Science Association, 2020-02)
      Pooling colostrum is commonly practiced on Irish dairy farms. Pooling can result in dilution when colostrums with high and low IgG concentrations are mixed, thereby predisposing calves to failure of passive immunity. The objectives of this study were to compare IgG concentrations in colostrum from individual cows with colostrum pooled from several cows, and assess serum IgG concentrations, morbidity, and mortality among calves fed colostrum from their own dam, from a different cow, or pooled from several cows. We hypothesized that pooling colostrum reduces IgG concentration due to dilution compared with colostrum from individual cows, and that calves fed pooled colostrum achieve lower serum IgG concentrations than calves fed colostrum from individual cows. Calves were randomly assigned to 1 of 3 groups: (1) fed colostrum from their own dam (n = 20); (2) fed colostrum from a different dam (n = 20); or (3) fed pooled colostrum (n = 18). A sample of colostrum fed to each calf was collected. Serum samples were collected from calves at birth (0 h) and at 24 h after colostrum feeding. Colostrum and serum IgG concentrations were measured by radial immunodiffusion. Calves were weighed at birth and at weaning, and the health status of each calf was assessed twice daily. Health assessment was based on general demeanor, rectal temperature, fecal consistency, respiratory rate, and the presence of cough, nasal, or ocular discharge. Colostrum and serum IgG concentrations, and weaning weights were compared using ANOVA. Associations between group and morbidity or mortality rates were compared using χ2 or Fisher’s exact tests. Median and 95% confidence intervals (95% CI) of IgG concentrations of colostrum were 99.4 (81.8–111.5), 95.2 (84.1–107.2), and 100.7 (90.5–104.4) g/L for own dam, different dam, and pooled groups, respectively. We did not find any differences in colostrum IgG concentrations among the colostrum sources. Median (95% CI) serum IgG concentrations at 24 h were 52.0 (45.6–65.9), 55.7 (51.2–65.9), and 53.1 (46.2–63.7) g/L for calves that received colostrum from own dam, different dam, and pooled, respectively. All calves achieved adequate passive immunity. Serum IgG concentrations at 24 h, weaning weights, and proportions of morbidity and mortality were not different among the 3 groups. Our results suggest that on dairy farms where median colostrum IgG concentrations are high and colostrum management is optimal, pooling has a minimal effect on passive immunity and subsequent calf health.