• Universally Distributed Single-Copy Genes Indicate a Constant Rate of Horizontal Transfer

      Creevey, Christopher J.; Doerks, Tobias; Fitzpatrick, David; Raes, Jeroen; Bork, Peer (PLOS, 2011-08-05)
      Single copy genes, universally distributed across the three domains of life and encoding mostly ancient parts of the translation machinery, are thought to be only rarely subjected to horizontal gene transfer (HGT). Indeed it has been proposed to have occurred in only a few genes and implies a rare, probably not advantageous event in which an ortholog displaces the original gene and has to function in a foreign context (orthologous gene displacement, OGD). Here, we have utilised an automatic method to identify HGT based on a conservative statistical approach capable of robustly assigning both donors and acceptors. Applied to 40 universally single copy genes we found that as many as 68 HGTs (implying OGDs) have occurred in these genes with a rate of 1.7 per family since the last universal common ancestor (LUCA). We examined a number of factors that have been claimed to be fundamental to HGT in general and tested their validity in the subset of universally distributed single copy genes. We found that differing functional constraints impact rates of OGD and the more evolutionarily distant the donor and acceptor, the less likely an OGD is to occur. Furthermore, species with larger genomes are more likely to be subjected to OGD. Most importantly, regardless of the trends above, the number of OGDs increases linearly with time, indicating a neutral, constant rate. This suggests that levels of HGT above this rate may be indicative of positively selected transfers that may allow niche adaptation or bestow other benefits to the recipient organism.
    • Urine patch distribution under dairy grazing at three stocking rates in Ireland

      Dennis, S.J.; Moir, James L.; Cameron, K.C.; Di, H.J.; Hennessy, Deirdre; Richards, Karl G. (Teagasc (Agriculture and Food Development Authority), Ireland, 2011)
      Nitrate pollution of water is a serious global environmental issue. Grassland agriculture is a major source of diffuse nitrate pollution, with much of this nitrate originating from the urine patches of grazing animals. To study nitrate losses from grassland it is necessary to consider the areas of grassland that are affected by urine separately from the remainder of the pasture. Urine patches can be observed in the field as areas of vigorously growing pasture, however the pasture may continue to respond for several months, making it difficult to determine when the observed patch was actually deposited. A global positioning system was used to record the location of all urine and dung patches in a pasture at every second grazing on an Irish dairy farm during the grazing season. Any patches reappearing were removed from the data, allowing the fresh urine patches to be identified. Dairy cows deposited 0.359 urine patches per grazing hour, a value that may be used to predict the distribution of urine patches under any grazing regime. This equated to 14.1 to 20.7% of the soil surface being wet by urine annually at stocking rates of 2.0 to 2.94 cows per hectare, consistent with previous research. These values may be used in conjunction with values for nitrate loss from urine and non-urine areas to calculate nitrate losses from grazed pasture at a range of stocking rates.
    • Use of different wood types as environmental enrichment to manage tail biting in docked pigs in a commercial fully-slatted system

      Chou, Jen-Yun; D'Eath, Rick B.; Sandercock, Dale A.; Waran, Natalie; Haigh, Amy; O'Driscoll, Keelin; Department of Agriculture, Food and the Marine, Ireland; Teagasc Walsh Fellowship Programme; Scotland's Rural College (Elsevier, 2018-04-07)
      Provision of adequate environmental enrichment on pig farms is a legal requirement under current EU legislation and also alleviates the risk of tail biting. Wood is an organic alternative where loose bedding, which has been identified as the optimal enrichment, is not possible on fully-slatted floors since it may disrupt the slurry system. The study compared four different wood types (beech (Fagus sylvatica), larch (Larix decidua), spruce (Picea sitchensis), and Scots pine (Pinus sylvestris L.)) as enrichment, taking into account the qualities of the wood, economic considerations, and effectiveness at reducing damaging behaviours and lesions. A total of 800 tail docked finisher pigs on an Irish commercial farm were used. Eight pens were provided with each wood type (25 pigs/pen), and the study was conducted over 2 replicates in time. In each pen a single wooden post was presented to the pigs in a metal dispenser with two lateral chains during the finisher period (12–22 weeks of age). The rate of wear, moisture content, and hardness of the wood along with lesion scorings and behavioural observation on pigs were monitored. Spruce was consumed more quickly than other wood types in terms of weight loss and reduction in length (P < 0.001), resulting in a greater cost per pig. Pigs were observed interacting with the spruce more frequently than the other wood types (P < 0.05). Pigs also interacted with the wood more often than the chains in spruce allocated pens (P < 0.001). Overall the interaction with wood posts did not decline significantly across time. However, there was no difference in the frequency of harmful behaviours (tail/ear/flank-biting) observed between wood types, and also no difference in the effectiveness of the different types of wood in reducing tail or ear damage. There was a positive correlation between ear lesion and tear-staining scores (rp= 0.286, P < 0.01), and between tail lesion and tail posture scores (rp= 0.206, P < 0.05). Wood types did not affect visceral condemnation obtained in the slaughterhouse. Wood is a potentially suitable enrichment material, yet the wood species could influence its attractiveness to pigs.
    • Using models to establish the financially optimum strategy for Irish dairy farms

      Ruelle, Elodie; Delaby, Luc; Wallace, Michael; Shalloo, Laurence; European Union; Department of Agriculture, Food and the Marine; 11/S/132 (Elsevier, 2017-11-02)
      Determining the effect of a change in management on farm with differing characteristics is a significant challenge in the evaluation of dairy systems due to the interacting components of complex biological systems. In Ireland, milk production is increasing substantially following the abolition of the European Union milk quota regime in 2015. There are 2 main ways to increase the milk production on farm (within a fixed land base): either increase the number of animals (thus increasing the stocking rate) or increase the milk production per animal through increased feeding or increased lactation length. In this study, the effect of increased concentrate feeding or an increase in grazing intensity was simulated to determine the effect on the farm system and its economic performance. Four stocking rates (2.3, 2.6, 2.9, and 3.2 cow/ha) and 5 different concentrate supplementation strategies (0, 180, 360, 600, and 900 kg of dry matter/lactation) resulting in 20 different scenarios were evaluated across different milk, concentrate, and silage purchase prices. Each simulation was run across 10 yr of meteorological data, which had been recorded over the period 2004 to 2013. Three models—the Moorepark and St Gilles grass growth model, the pasture-based herd dynamic milk model, and the Moorepark dairy systems model—were integrated and applied to simulate the different scenarios. Overall, this study has demonstrated that the most profitable scenario was a stocking rate of 2.6 cow/ha with a concentrate supplementation of 600 kg of dry matter/cow. The factor that had the greatest influence on profitability was variability of milk price.
    • Using the Biocheck.UGent™ scoring tool in Irish farrow-to-finish pig farms: assessing biosecurity and its relation to productive performance

      Rodrigues da Costa, Maria; Gasa, Josep; Calderón Díaz, Julia A; Postma, Merel; Dewulf, Jeroen; McCutcheon, Gerard; Manzanilla, Edgar G; Department of Agriculture Food and the Marine; 14/S/832 (Biomed Central, 2019-03-01)
      Background Biosecurity is one of the main factors affecting disease occurrence and antimicrobial use, and it is associated with performance in pig production. However, the importance of specific measures could vary depending on the (national) context. The aim of this study was to describe the biosecurity status in a cohort of Irish pig farms, to investigate which of those biosecurity aspects are more relevant by using the Biocheck.UGent™ scoring system, and to study the impact of such aspects on farm performance. Results External biosecurity score was high compared to most countries due to the characteristics of the Irish pig sector (i.e. purchasing only semen and breeding gilts on farm). The internal biosecurity score was lower and had greater variability among farms than other EU countries. Using multivariable linear regression, the biosecurity practices explained 8, 23, and 16% of variability in piglet mortality, finisher mortality, and average daily gain, respectively. Three clusters of farms were defined based on their biosecurity scores (0 to 100) using principal components and hierarchical clustering analysis. Scores for clusters 1, 2 and 3 were (mean ± SD) 38 ± 7.6, 61 ± 7.0 and 66 ± 9.8 for internal and 73 ± 5.1, 74 ± 5.3 and 86 ± 4.5 for external biosecurity. Cluster 3 had lower piglet mortality (P = 0.022) and higher average daily gain (P = 0.037) when compared to cluster 2. Conclusions Irish farms follow European tendencies with internal biosecurity posing as the biggest liability. Our results suggest that practices related to the environment and region, feed, water and equipment supply, and the management of the different stages, need to be addressed in lower performing farms to improve productive performance. Further studies on the economic impact of these biosecurity practices including complementary data on herd health, gilt rearing, piglet management, vaccination and feeding strategies are needed.
    • Using variable importance measures to identify a small set of SNPs to predict heading date in perennial ryegrass.

      Byrne, Stephen L.; Conaghan, Patrick; Barth, Susanne; Arojju, Sai Krishna; Casler, Michael; Michel, Thibauld; Velmurugan, Janaki; Milbourne, Dan; E.U. Marie Skłodowska-Curie Fellowship; Teagasc Walsh Fellowship Programme; et al. (Nature, 2017-06-15)
      Prior knowledge on heading date enables the selection of parents of synthetic cultivars that are well matched with respect to time of heading, which is essential to ensure plants put together will cross pollinate. Heading date of individual plants can be determined via direct phenotyping, which has a time and labour cost. It can also be inferred from family means, although the spread in days to heading within families demands roguing in first generation synthetics. Another option is to predict heading date from molecular markers. In this study we used a large training population consisting of individual plants to develop equations to predict heading date from marker genotypes. Using permutation-based variable selection measures we reduced the marker set from 217,563 to 50 without impacting the predictive ability. Opportunities exist to develop a cheap assay to sequence a small number of regions in linkage disequilibrium with heading date QTL in thousands of samples. Simultaneous use of these markers in non-linkage based marker-assisted selection approaches, such as paternity testing, should enhance the utility of such an approach.
    • Validation and Improvement of the Beef Production Sub-index in Ireland for Beef Cattle

      Drennan, Michael J; McGee, Mark; Clarke, Anne Marie; Kenny, David A.; Evans, R. D.; Berry, Donagh P. (Teagasc, 2009-12-01)
      The objectives of the following study were to: a. Quantify the effect of sire genetic merit for BCI on: 1. feed intake, growth and carcass traits of progeny managed under bull or steer beef production systems. 2. live animal scores, carcass composition and plasma hormone and metabolite concentrations in their progeny. b. Compare the progeny of : 1. Late-maturing beef with dairy breeds and 2. Charolais (CH), Limousin (LM), Simmental (SM) and Belgian Blue (BB) sires bred to beef suckler dams, for feed intake, blood hormones and metabolites, live animal measurements, carcass traits and carcass value in bull and steer production systems.
    • Validation of national genetic evaluations for maternal beef cattle traits using Irish field data

      McHugh, Noirin; Cromie, A. R.; Evans, R. D.; Berry, Donagh P. (American Society of Animal Science, 2014-11-24)
      Genetic evaluations provide information to aid in breeding decisions that increase long-term performance of animals and herds. However, to date no study has been undertaken to investigate the accuracy of the Irish maternal genetic evaluations in beef cattle. The objective, therefore, of this study was to quantify the relationship between phenotypic performance and measures of genetic merit for predominantly maternal-related traits in Irish beef cattle. The association between animal EBV for calving interval, age at first calving, and both direct and maternal weaning weight with the respective phenotypic performance was quantified using a fixed effects model; the expectation for the regression coefficient of phenotypic performance on EBV was one. The association between genetic merit for cow survival, perinatal mortality, calving assistance, and calving dystocia with the log of the odds of the respective trait was quantified using logistic regression. The association analyses were conducted using field data on up to 38,619 records from 5,236 herds. Age at first calving increased linearly by 0.32 ± 0.15 (P = 0.03) days per day increase in EBV for age at first calving. Calving interval increased by, on average, 0.58 ± 0.16 (P = 0.002) days per day increase in EBV for calving interval although the association differed by parity with a greater association in pluriparae. Weaning weight increased linearly by 1.74 ± 0.09 and 0.84 ± 0.16 kg (P < 0.001) per kilogram increase in EBV for direct and maternal weaning weight, respectively. The log of the odds of a cow surviving to next lactation increased linearly by 0.16 ± 0.03 (P < 0.001) per unit increase in EBV for cow survival. The log of the odds of an assisted calving or dystocia both increased linearly by 0.21 ± 0.01 and 0.24 ± 0.01, respectively, per unit increase in EBV for direct calving difficulty (P < 0.001). The log of the odds of a dead calf at birth increased linearly by 0.93 ± 0.13 (P < 0.001) per unit increase in EBV for calf mortality. Results from this study show that selection of breeding animals for favorable maternal genetic attributes will result in favorable improvements in performance and profitability.
    • Variance components for bovine tuberculosis infection and multi-breed genome-wide association analysis using imputed whole genome sequence data

      Ring, Siobhan C.; Purfield, Deirdre C; Good, Margaret; Breslin, P.; Ryan, Eoin; Blom, A.; Evans, R. D.; Doherty, M. L.; Bradley, Daniel G; Berry, Donagh P.; et al. (Public Library of Science (PLoS), 2019-02-14)
      Bovine tuberculosis (bTB) is an infectious disease of cattle generally caused by Mycobacterium bovis, a bacterium that can elicit disease humans. Since the 1950s, the objective of the national bTB eradication program in Republic of Ireland was the biological extinction of bTB; that purpose has yet to be achieved. Objectives of the present study were to develop the statistical methodology and variance components to undertake routine genetic evaluations for resistance to bTB; also of interest was the detection of regions of the bovine genome putatively associated with bTB infection in dairy and beef breeds. The novelty of the present study, in terms of research on bTB infection, was the use of beef breeds in the genome-wide association and the utilization of imputed whole genome sequence data. Phenotypic bTB data on 781,270 animals together with imputed whole genome sequence data on 7,346 of these animals’ sires were available. Linear mixed models were used to quantify variance components for bTB and EBVs were validated. Within-breed and multi-breed genome-wide associations were undertaken using a single-SNP regression approach. The estimated genetic standard deviation (0.09), heritability (0.12), and repeatability (0.30) substantiate that genetic selection help to eradicate bTB. The multi-breed genome-wide association analysis identified 38 SNPs and 64 QTL regions associated with bTB infection; two QTL regions (both on BTA23) identified in the multi-breed analysis overlapped with the within-breed analyses of Charolais, Limousin, and Holstein-Friesian. Results from the association analysis, coupled with previous studies, suggest bTB is controlled by an infinitely large number of loci, each having a small effect. The methodology and results from the present study will be used to develop national genetic evaluations for bTB in the Republic of Ireland. In addition, results can also be used to help uncover the biological architecture underlying resistance to bTB infection in cattle.
    • Variance components for bovine tuberculosis infection and multi-breed genome-wide association analysis using imputed whole genome sequence data

      Ring, S. C.; Purfield, D. C.; Good, M.; Breslin, P.; Ryan, E.; Blom, A.; Evans, R. D.; Doherty, M. L.; Bradley, D. G.; Berry, D. P.; et al. (Public Library of Science (PLoS), 2019-02-14)
      Bovine tuberculosis (bTB) is an infectious disease of cattle generally caused by Mycobacterium bovis, a bacterium that can elicit disease humans. Since the 1950s, the objective of the national bTB eradication program in Republic of Ireland was the biological extinction of bTB; that purpose has yet to be achieved. Objectives of the present study were to develop the statistical methodology and variance components to undertake routine genetic evaluations for resistance to bTB; also of interest was the detection of regions of the bovine genome putatively associated with bTB infection in dairy and beef breeds. The novelty of the present study, in terms of research on bTB infection, was the use of beef breeds in the genome-wide association and the utilization of imputed whole genome sequence data. Phenotypic bTB data on 781,270 animals together with imputed whole genome sequence data on 7,346 of these animals’ sires were available. Linear mixed models were used to quantify variance components for bTB and EBVs were validated. Within-breed and multi-breed genome-wide associations were undertaken using a single-SNP regression approach. The estimated genetic standard deviation (0.09), heritability (0.12), and repeatability (0.30) substantiate that genetic selection help to eradicate bTB. The multi-breed genome-wide association analysis identified 38 SNPs and 64 QTL regions associated with bTB infection; two QTL regions (both on BTA23) identified in the multi-breed analysis overlapped with the within-breed analyses of Charolais, Limousin, and Holstein-Friesian. Results from the association analysis, coupled with previous studies, suggest bTB is controlled by an infinitely large number of loci, each having a small effect. The methodology and results from the present study will be used to develop national genetic evaluations for bTB in the Republic of Ireland. In addition, results can also be used to help uncover the biological architecture underlying resistance to bTB infection in cattle.
    • Variance components for susceptibility to Mycobacterium bovis infection in dairy and beef cattle

      Richardson, Ian W.; Bradley, Daniel G; Higgins, Isabella; More, Simon J; McClure, Jennifer; Berry, Donagh P. (Biomed Central, 2014-11-18)
      Background Infection of livestock with bovine tuberculosis (bTB; Mycobacterium bovis) is of major economical concern in many countries; approximately 15 000 to 20 000 cattle are infected per year in Ireland. The objective of this study was to quantify the genetic variation for bTB susceptibility in Irish dairy and beef cattle. Methods A total of 105 914 cow, 56 904 heifer and 21 872 steer single intra-dermal comparative tuberculin test records (i.e., binary trait) collected from the years 2001 to 2010 from dairy and beef herds were included in the analysis. Only animal level data pertaining to periods of herd bTB infection were retained. Variance components for bTB were estimated using animal linear and threshold mixed models and co-variances were estimated using sire linear mixed models. Results Using a linear model, the heritability for susceptibility to bTB in the entire dataset was 0.11 and ranged from 0.08 (heifers in dairy herds) to 0.19 (heifers in beef herds) among the sub-populations investigated. Differences in susceptibility to bTB between breeds were clearly evident. Estimates of genetic correlations for bTB susceptibility between animal types (i.e., cows, heifers, steers) were all positive (0.10 to 0.64), yet different from one. Furthermore, genetic correlations for bTB susceptibility between environments that differed in herd prevalence of bTB ranged from 0.06 to 0.86 and were all different from one. Conclusions Genetic trends for bTB susceptibility observed in this study suggest a slight increase in genetic susceptibility to bTB in recent years. Since bTB is of economic importance and because all animals are routinely tested at least once annually in Ireland and some other countries, the presence of genetic variation for bTB susceptibility suggests that bTB susceptibility should be included in a national breeding program to halt possible deterioration in genetic susceptibility to bTB infection.
    • The variation in morphology of perennial ryegrass cultivars throughout the grazing season and effects on organic matter digestibility

      Beecher, Marion; Hennessy, Deirdre; Boland, T. M.; McEvoy, Mary; O'Donovan, Michael; Lewis, Eva (Wiley, 2013-09-19)
      The grass plant comprises leaf, pseudostem, true stem (including inflorescence) and dead material. These components differ in digestibility, and variations in their relative proportions can affect sward quality. The objective of this study was to determine the change in the proportion and organic matter digestibility (OMD) of leaf, pseudostem, true stem and dead components of four perennial ryegrass cultivars (two tetraploids: Astonenergy and Bealey and two diploids: Abermagic and Spelga) throughout a grazing season. The DM proportions and in vitro OMD of leaf, pseudostem, true stem and dead in all cultivars were determined during ten grazing rotations between May 2011 and March 2012. There was an interaction between rotation and cultivar for leaf, pseudostem, true stem and dead proportions. In May and June, Astonenergy had the highest leaf and lowest true stem proportion (P < 0·05). From July onwards, there was no difference in leaf or true stem proportion between cultivars. Bealey had the highest annual mean OMD (752 g kg−1) and Spelga the lowest (696 g kg−1; P < 0·05). The OMD followed the order leaf > pseudostem > true stem > dead. Bealey had the highest combined leaf and pseudostem proportion 0·92, which explains why it had the highest OMD. In this study, the tetraploid cultivars had the highest leaf and pseudostem proportion and OMD. For accurate descriptions of a sward in grazing studies and to accurately determine sward morphological composition, pseudostem should be separated from true stem, particularly during the reproductive stage when true stem is present.
    • Variation in the Ovine Abomasal Lymph Node Transcriptome between Breeds Known to Differ in Resistance to the Gastrointestinal Nematode

      Ahmed, Albin M.; Good, Barbara; Hanrahan, James P; McGettigan, Paul; Browne, John A; Keane, Orla M; Bahar, Bojlul; Mehta, Jai; Markey, Bryan; Lohan, Amanda; et al. (PLoS, 2015-05-15)
      Texel lambs are known to be more resistant to gastrointestinal nematode (GIN) infection than Suffolk lambs, with a greater ability to limit infection. The objectives of this study were to: 1) profile the whole transcriptome of abomasal lymph node tissue of GIN-free Texel and Suffolk lambs; 2) identify differentially expressed genes and characterize the immune-related biological pathways and networks associated with these genes. Abomasal lymph nodes were collected from Texel (n = 6) and Suffolk (n = 4) lambs aged 19 weeks that had been GIN-free since 6 weeks of age. Whole transcriptome profiling was performed using RNA-seq on the Illumina platform. At the time of conducting this study, a well annotated Ovine genome was not available and hence the sequence reads were aligned with the Bovine (UMD3.1) genome. Identification of differentially expressed genes was followed by pathway and network analysis. The Suffolk breed accounted for significantly more of the differentially expressed genes, (276 more highly expressed in Suffolk v 162 in Texel; P < 0.001). The four most significant differentially expressed pathways were all related to immunity and were classified as: Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses, Activation of IRF by Cytosolic Pattern Recognition Receptors, Role of RIG-I-like Receptors in Antiviral Innate Immunity, and Interferon Signaling. Of significance is the fact that all of these four pathways were more highly expressed in the Suffolk. These data suggest that in a GIN-free environment, Suffolk lambs have a more active immune profile relative to the Texel: this immune profile may contribute to the poorer efficiency of response to a GIN challenge in the Suffolk breed compared to the Texel breed.
    • Variations in travel time for N loading to groundwaters in four case studies in Ireland:Implications for policy makers and regulators

      Fenton, Owen; Coxon, Catherine E.; Haria, Atul H.; Horan, Brendan; Humphreys, James; Johnston, Paul; Murphy, Paul N. C.; Necpalova, Magdalena; Premrov, Alina; Richards, Karl G. (School of Agriculture, Food Science and Veterinary Medicine, University College Dublin in association with Teagasc, 2009)
      Mitigation measures to protect waterbodies must be implemented by 2012 to meet the requirements of the EU Water Framework Directive. The efficacy of these measures will be assessed in 2015. Whilst diffuse N pathways between source and receptor are generally long and complex, EU legislation does not account for differences in hydrological travel time distributions that may result in different water quality response times. The “lag time” between introducing mitigation measures and first improvements in water quality is likely to be different in different catchments; a process that should be considered by policy makers and catchment managers. Many examples of travel time variations have been quoted in the literature but no Irish specific examples are available. Lag times based on initial nutrient breakthrough at four contrasting sites were estimated to a receptor 500 m away from a source. Vertical travel times were estimated using a combination of depth of infiltration calculations based on effective rainfall and subsoil physical parameters and existing hydrological tracer data. Horizontal travel times were estimated using a combination of Darcian linear velocity calculations and existing tracer migration data. Total travel times, assuming no biogeochemical processes, ranged from months to decades between the contrasting sites; the shortest times occurred under thin soil/subsoil on karst limestone and the longest times through thick low permeability soils/subsoils over poorly productive aquifers. Policy makers should consider hydrological lag times when assessing the efficacy of mitigation measures introduced under the Water Framework Directive. This lag time reflects complete flushing of a particular nutrient from source to receptor. Further research is required to assess the potential mitigation of nitrate through denitrification along the pathway from source to receptor.
    • Veterinary dairy herd fertility service provision in seasonal and non-seasonal dairy industries - a comparison

      Mee, John F (Biomed Central, 2010-04-01)
      The decline in dairy herd fertility internationally has highlighted the limited impact of traditional veterinary approaches to bovine fertility management. Three questionnaire surveys were conducted at buiatrics conferences attended by veterinary practitioners on veterinary dairy herd fertility services (HFS) in countries with a seasonal (Ireland, 47 respondents) and non-seasonal breeding model (The Netherlands, 44 respondents and Portugal, 31 respondents). Of the 122 respondents, 73 (60%) provided a HFS and 49 (40%) did not. The majority (76%) of all practitioners who responded stated that bovine fertility had declined in their practice clients' herds with inadequate cow management, inadequate nutrition and increased milk yield as the most important putative causes. The type of clients who adopted a herd fertility service were deemed more educated than average (70% of respondents), and/or had fertility problems (58%) and/or large herds (53%). The main components of this service were routine postpartum examinations (95% of respondents), fertility records analysis (75%) and ultrasound pregnancy examinations (69%). The number of planned visits per annum varied between an average of four in Ireland, where breeding is seasonal, and 23 in Portugal, where breeding is year-round. The benefits to both the practitioner and their clients from running a HFS were cited as better fertility, financial rewards and job satisfaction. For practitioners who did not run a HFS the main reasons given were no client demand (55%) and lack of fertility records (33%). Better economic evidence to convince clients of the cost-benefit of such a service was seen as a major constraint to adoption of this service by 67% of practitioners.
    • Visual drainage assessment: A standardised visual soil assessment method for use in land drainage design in Ireland

      Tuohy, Patrick; Humphreys, James; Holden, Nicholas M.; O'Loughlin, James; Reidy, Brian; Fenton, Owen (Teagasc (Agriculture and Food Development Authority), Ireland, 20/08/2016)
      The implementation of site-specific land drainage system designs is usually disregarded by landowners in favour of locally established ‘standard practice’ land drainage designs. This is due to a number of factors such as a limited understanding of soil–water interactions, lack of facilities for the measurement of soil’s physical or hydrological parameters and perceived time wastage and high costs. Hence there is a need for a site-specific drainage system design methodology that does not rely on inaccessible, time-consuming and/or expensive measurements of soil physical or hydrological properties. This requires a standardised process for deciphering the drainage characteristics of a given soil in the field. As an initial step, a new visual soil assessment method, referred to as visual drainage assessment (VDA), is presented whereby an approximation of the permeability of specific soil horizons is made using seven indicators (water seepage, pan layers, texture, porosity, consistence, stone content and root development) to provide a basis for the design of a site-specific drainage system. Across six poorly drained sites (1.3 ha to 2.6 ha in size) in south-west Ireland a VDA-based design was compared with (i) an ideal design (utilising soil physical measurements to elucidate soil hydraulic parameters) and (ii) a standard design (0.8 m deep drains at a 15 m spacing) by model estimate of water table control and rainfall recharge/drain discharge capacity. The VDA method, unlike standard design equivalents, provided a good approximation of an ideal (from measured hydrological properties) design and prescribed an equivalent land drainage system in the field. Mean modelled rainfall recharge/drain discharge capacity for the VDA (13.3 mm/day) and ideal (12.0 mm/day) designs were significantly higher (P < 0.001, s.e. 1.42 mm/day) than for the standard designs (0.5 mm/day), when assuming a design minimum water table depth of 0.45 m.
    • Web-based Tools for the Analysis of DNA Microarrays

      Geeleher, P.; Golden, A.; Hinde, J.; Morris, Dermot G. (Teagasc, 2008-01-01)
      DNA microarrays are widely used for gene expression profiling. Raw data resulting from microarray experiments, however, tends to be very noisy and there are many sources of technical variation and bias. This raw data needs to be quality assessed and interactively preprocessed to minimise variation before statistical analysis in order to achieve meaningful result. Therefore microarray analysis requires a combination of visualisation and statistical tools, which vary depending on what microarray platform or experimental design is used.Bioconductor is an existing open source software project that attempts to facilitate analysis of genomic data. It is a collection of packages for the statistical programming language R. Bioconductor is particularly useful in analyzing microarray experiments. The problem is that the R programming language’s command line interface is intimidating to many users who do not have a strong background in computing. This often leads to a situation where biologists will resort to using commercial software which often uses antiquated and much less effective statistical techniques, as well as being expensively priced. This project aims to bridge this gap by providing a user friendly web-based interface to the cutting edge statistical techniques of Bioconductor.
    • Whole blood gene expression profiling of neonates with confirmed bacterial sepsis

      Dickinson, Paul; Smith, Claire L.; Forster, Thorsten; Craigon, Marie; Ross, Alan J.; Khondoker, Mizan R; Ivens, Alasdair; Lynn, David J.; Orme, Judith; Jackson, Allan; et al. (ElsevierDickinson, P., Smith, C., Forster, T., Craigon, M., Ross, A., Khondoker, M., Ivens, A., Lynn, D., Orme, J., Jackson, A., Lacaze, P., Flanagan, K., Stenson, B. and Ghazal, P. Whole blood gene expression profiling of neonates with confirmed bacterial sepsis. Genomics Data, [online] 3, pp.41-48. Available at: https://dx.doi.org/10.1016/j.gdata.2014.11.003 [Accessed 1 Aug. 2019]., 2014-11-15)
      Neonatal infection remains a primary cause of infant morbidity and mortality worldwide and yet our understanding of how human neonates respond to infection remains incomplete. Changes in host gene expression in response to infection may occur in any part of the body, with the continuous interaction between blood and tissues allowing blood cells to act as biosensors for the changes. In this study we have used whole blood transcriptome profiling to systematically identify signatures and the pathway biology underlying the pathogenesis of neonatal infection. Blood samples were collected from neonates at the first clinical signs of suspected sepsis alongside age matched healthy control subjects. Here we report a detailed description of the study design, including clinical data collected, experimental methods used and data analysis workflows and which correspond with data in Gene Expression Omnibus (GEO) data sets (GSE25504). Our data set has allowed identification of a patient invariant 52-gene classifier that predicts bacterial infection with high accuracy and lays the foundation for advancing diagnostic, prognostic and therapeutic strategies for neonatal sepsis.
    • Whole genome association study identifies regions of the bovine genome and biological pathways involved in carcass trait performance in Holstein-Friesian cattle

      Doran, Anthony G; Berry, Donagh P.; Creevey, Christopher J.; Department of Agriculture, Food and the Marine, Ireland; Teagasc Walsh Fellowship Programme; Science Foundation Ireland; Irish Cattle Breeding Federation; RSF-06-0353; 11/S/112; 2009183; et al. (Biomed Central, 2014-10)
      Background Four traits related to carcass performance have been identified as economically important in beef production: carcass weight, carcass fat, carcass conformation of progeny and cull cow carcass weight. Although Holstein-Friesian cattle are primarily utilized for milk production, they are also an important source of meat for beef production and export. Because of this, there is great interest in understanding the underlying genomic structure influencing these traits. Several genome-wide association studies have identified regions of the bovine genome associated with growth or carcass traits, however, little is known about the mechanisms or underlying biological pathways involved. This study aims to detect regions of the bovine genome associated with carcass performance traits (employing a panel of 54,001 SNPs) using measures of genetic merit (as predicted transmitting abilities) for 5,705 Irish Holstein-Friesian animals. Candidate genes and biological pathways were then identified for each trait under investigation. Results Following adjustment for false discovery (q-value < 0.05), 479 quantitative trait loci (QTL) were associated with at least one of the four carcass traits using a single SNP regression approach. Using a Bayesian approach, 46 QTL were associated (posterior probability > 0.5) with at least one of the four traits. In total, 557 unique bovine genes, which mapped to 426 human orthologs, were within 500kbs of QTL found associated with a trait using the Bayesian approach. Using this information, 24 significantly over-represented pathways were identified across all traits. The most significantly over-represented biological pathway was the peroxisome proliferator-activated receptor (PPAR) signaling pathway. Conclusions A large number of genomic regions putatively associated with bovine carcass traits were detected using two different statistical approaches. Notably, several significant associations were detected in close proximity to genes with a known role in animal growth such as glucagon and leptin. Several biological pathways, including PPAR signaling, were shown to be involved in various aspects of bovine carcass performance. These core genes and biological processes may form the foundation for further investigation to identify causative mutations involved in each trait. Results reported here support previous findings suggesting conservation of key biological processes involved in growth and metabolism.
    • Within- and across-breed imputation of high-density genotypes in dairy and beef cattle from medium- and low-density genotypes

      Berry, Donagh P.; McClure, Matthew C.; Mullen, Michael P. (Wiley, 2013-12-05)
      The objective of this study was to evaluate, using three different genotype density panels, the accuracy of imputation from lower- to higher-density genotypes in dairy and beef cattle. High-density genotypes consisting of 777 962 single-nucleotide polymorphisms (SNP) were available on 3122 animals comprised of 269, 196, 710, 234, 719, 730 and 264 Angus, Belgian Blue, Charolais, Hereford, Holstein-Friesian, Limousin and Simmental bulls, respectively. Three different genotype densities were generated: low density (LD; 6501 autosomal SNPs), medium density (50K; 47 770 autosomal SNPs) and high density (HD; 735 151 autosomal SNPs). Imputation from lower- to higher-density genotype platforms was undertaken within and across breeds exploiting population-wide linkage disequilibrium. The mean allele concordance rate per breed from LD to HD when undertaken using a single breed or multiple breed reference population varied from 0.956 to 0.974 and from 0.947 to 0.967, respectively. The mean allele concordance rate per breed from 50K to HD when undertaken using a single breed or multiple breed reference population varied from 0.987 to 0.994 and from 0.987 to 0.993, respectively. The accuracy of imputation was generally greater when the reference population was solely comprised of the breed to be imputed compared to when the reference population comprised of multiple breeds, although the impact