• Insulin restores GH responsiveness during lactation-induced negative energy balance in dairy cattle: effects on expression of IGF-I and GH receptor 1A

      Butler, Stephen T.; Marr, A.L.; Pelton, Susanne H.; Radcliff, R.P.; Lucy, Matt C.; Butler, W.R.; US Department of Agriculture; Teagasc Walsh Fellowship Programme; NE-161 (Bioscientifica, 2003-02-01)
      Early lactation in dairy cattle is a period of severe negative energy balance (NEB) characterized by reduced blood glucose and insulin concentrations and elevated blood growth hormone (GH) concentrations. The liver is refractory to GH during NEB and this uncoupling of the GH-insulin-like growth factor (IGF) axis results in diminished plasma concentrations of IGF-I. Our objectives were to examine the effects of insulin administration during the immediate postpartum period on plasma IGF-I and GH concentrations and to examine the hepatic expression of total GH receptor (all GH receptor transcripts), GH receptor 1A (GHR 1A) and IGF-I. In addition, we examined adipose tissue for total GH receptor and IGF-I mRNA levels to establish the effects of chronic hyperinsulinemia on an insulin-responsive peripheral tissue. Holstein cows (n = 14) were subjected to either a hyperinsulinemic-euglycemic clamp (insulin; INS) or saline infusion (control; CTL) for 96 hours starting on day 10 postpartum. Insulin was infused intravenously (1µg • kg BW-1 • h-1), blood samples were collected hourly, and euglycemia was maintained by infusion of glucose. Insulin concentrations during the infusions were increased 8-fold in INS cows compared with CTL cows (2.33 ± 0.14 vs. 0.27 ± 0.14 ng/ml; P < 0.001) while blood glucose concentrations were not different between treatments (45.3 ± 2.2 vs. 42.5 ± 2.2 mg/dl; P > 0.1). Plasma IGF-I increased continuously during the insulin infusion, and reached the highest concentrations at the end of the clamp, being almost four-fold higher in INS compared with CTL cows (117 ± 4 vs. 30 ± 4 ng/ml; P < 0.001). Hepatic expression of GHR 1A and IGF-I mRNA was low in CTL cows, but was increased 3.6-fold (P < 0.05) and 6.3-fold (P < 0.001) respectively in INS cows. By contrast, in adipose tissue the changes in gene expression in response to insulin were reversed with decreases in both total GHR and IGF-I mRNA. The expression of GHR 1A and IGF-I mRNA in liver tissue were correlated in INS (r = 0.86; P < 0.05), but not CTL cows (r = 0.43; P > 0.1). Insulin appears to be a key metabolic signal in coupling the GH-IGF axis, thus orchestrating a marked elevation in circulating IGF-I concentrations.
    • Intake, efficiency, and feeding behavior characteristics of Holstein-Friesian cows of divergent Economic Breeding Index evaluated under contrasting pasture-based feeding treatments

      O'Sullivan, M.; Dillon, Pat; O'Sullivan, K.; Pierce, K.M.; Galvin, Norann; Egan, Michael; Buckley, Frank; Department of Agriculture Food and the Marine; 13/S/496 RAPIDFEED (Elsevier, 2019-07-03)
      The objective of the current study was to explore differences in dry matter intake, intake capacity, production efficiency, energy balance, and grazing behavior, of 2 divergent genetic groups (GG) of lactating Holstein-Friesian, selected using the Irish Economic Breeding Index (EBI). The GG were evaluated across 3 spring calving pasture-based feeding treatments (FT) over 3 yr. The 2 divergent GG were (1) high EBI, representative of the top 5% nationally (elite), and (2) EBI representative of the national average (NA). In each year 90 elite and 45 NA cows were randomly allocated to 1 of 3 FT: control, lower grass allowance, and high concentrate. Although FT did affect animal performance, there were few notable incidences of GG × FT interaction. The elite cows expressed lower daily milk yield (−1 kg) compared with NA. Elite cows did, however, express higher daily concentrations of milk fat (+3.7 g/kg) and protein (+2.1 g/kg) compared with NA. Daily yield of milk solids and net energy of lactation (NEL) was similar for both GG. Body weight (BW) was greater for NA (+13 kg) compared with elite, whereas mean body condition score was greater (+0.14) for elite compared with NA. Intake did not differ significantly between GG. Intake capacity, expressed as total dry matter intake/100 kg of BW, was greater with elite compared with NA. Production efficiency expressed as yield of milk solids per 100 kg of BW was greater with elite compared with NA, although milk solids/total dry matter intake did not differ between GG. Expressed as NEL as a proportion of net energy intake minus net energy of maintenance (NEL/NEI – NEM) and NEI/milk solids kg, indicated a slight reduction in the utilization of ingested energy for milk production with elite compared with NA. This is, however, suggested as favorable as it manifested as a more positive energy balance with elite compared with NA and so is likely to enhance robustness, increase longevity, and increase overall lifetime efficiency. Noteworthy was a consistent numerical trend toward more intense grazing activity with elite compared with NA cows, exhibited in the numerically greater grazing time (+19 min) and total number of bites per day (+2,591).
    • Intake, growth and carcass traits in male progeny of sires differing in genetic merit for beef production

      Clarke, Anne Marie; Drennan, Michael J; McGee, Mark; Kenny, David A.; Evans, R. D.; Berry, Donagh (Cambridge University Press, 2009-06)
      Validation of economic indexes under a controlled experimental environment, can aid in their acceptance and use as breeding tools to increase herd profitability. The objective of this study was to compare intake, growth and carcass traits in bull and steer progeny of high and low ranking sires, for genetic merit in an economic index. The Beef Carcass Index (BCI; expressed in euro (€) and based on weaning weight, feed intake, carcass weight, carcass conformation and fat scores) was generated by the Irish Cattle Breeding Federation as a tool to compare animals on genetic merit for the expected profitability of their progeny at slaughter. A total of 107 male suckler herd progeny, from 22 late-maturing ‘continental’ beef sires of high (n = 11) or low (n = 11) BCI were compared under either a bull or steer production system, and slaughtered at approximately 16 and 24 months of age, respectively. All progeny were purchased after weaning at approximately 6 to 8 months of age. Dry matter (DM) intake and live-weight gain in steer progeny offered grazed grass or grass silage alone, did not differ between the two genetic groups. Similarly, DM intake and feed efficiency did not differ between genetic groups during an ad libitum concentrate-finishing period on either production system. Carcasses of progeny of high BCI sires were 14 kg heavier (P < 0.05) than those of low BCI sires. In a series of regression analyses, increasing sire BCI resulted in increases in carcass weight (P < 0.01) and carcass conformation (P = 0.051) scores, and decreases in carcass fat (P < 0.001) scores, but had no effect on weaning weight or DM intake of the progeny. Each unit increase in sire expected progeny difference led to an increase in progeny weaning weight, DM intake, carcass weight, carcass conformation score and carcass fat score of 1.0 (s.e. = 0.53) kg, 1.1 (s.e. = 0.32) kg, 1.3 (s.e. = 0.31) kg, 0.9 (s.e. = 0.32; scale 1 to 15) and 1.0 (s.e. = 0.25; scale 1 to 15), respectively, none of which differed from the theoretical expectation of unity. The expected difference in profitability at slaughter between progeny of the high and low BCI sires was €42, whereas the observed phenotypic profit differential of the progeny was €53 in favour of the high BCI sires. Results from this study indicate that the BCI is a useful tool in the selection of genetically superior sires, and that actual progeny performance under the conditions of this study is within expectations for both bull and steer beef production systems.
    • Intake, growth and feed conversion efficiency of finishing beef cattle offered diets based on triticale, maize or grass silages, or ad libitum concentrates

      O'Kiely, Padraig (Teagasc (Agriculture and Food Development Authority), Ireland, 2011)
      The intake, growth and feed conversion efficiency of finishing cattle offered whole-crop triticale silage, harvested at different stubble heights, or maize silage, supplemented with different amounts and forms of crude protein, were compared with those of cattle offered grass silage or concentrate ad libitum. Ninety-eight continental crossbred steers (mean (s.d.) initial live weight 509 (38.6) kg) were allocated among 7 treatments in a randomized complete-block design: triticale silage from a crop harvested to a 14 (TS-L) or 35 (TS-H) cm high stubble, maize silage supplemented with a low (MS-LS) or high (MS-HS) protein concentrate, or with approximately half of the supplementary crude protein replaced by urea (MS-SU), grass silage (GS) or concentrate offered ad libitum (ALC). Each silage was offered ad libitum for 134 days, supplemented with 3 kg concentrate per head daily. Carcass gain did not differ (P>0.05) between animals on treatments TS-L and TS-H, but the carcass gain associated with TS-L was lower (P<0.05) than with GS or MS-HS, and with TS-H compared with MS-HS. Carcass gain was lower (P<0.05) for steers on GS compared to MS-HS, there were no differences (P>0.05) among the values for MS-LS, MS-HS and MS-SU; the carcass gain associated with ALC was the highest (P<0.001). The feed efficiency for carcass gain for the animals on TS-L, TS-H, GS, MS-LS, MS-HS, MS-SU and ALC was 44.1, 48.2, 60.8, 59.3, 68.3, 59.8 and 90.1 (s.e. 4.26) kg/t total DM intake, respectively (P<0.001). It is concluded that the ranking on nutritive value was TS<GS<MS<ALC. Elevating the cutting height of triticale conferred little benefit. Half the soybean meal in the barley-based supplement to maize silage could be replaced by barley plus urea without a negative effect on animal performance.
    • Integrated analysis of the local and systemic changes preceding the development of post-partum cytological endometritis

      Foley, Cathriona; Chapwanya, Aspinas; Callanan, John J; Whiston, Ronan; Miranda-CasoLuengo, Raúl; Lu, Junnan; Meijer, Wim G; Lynn, David J; O'Farrelly, Cliona; Meade, Kieran G (Biomed Central, 2015-10-19)
      Background The regulation of endometrial inflammation has important consequences for the resumption of bovine fertility postpartum. All cows experience bacterial influx into the uterus after calving; however a significant proportion fail to clear infection leading to the development of cytological endometritis (CE) and compromised fertility. We hypothesised that early immunological changes could not only act as potential prognostic biomarkers for the subsequent development of disease but also shed light on the pathogenesis of endometritis in the postpartum dairy cow. Methods Endometrial biopsy RNA was extracted from 15 cows at 7 and 21 days postpartum (DPP), using the Qiagen RNeasy® Plus Mini kit and quality determined using an Agilent 2100 bioanalyser. Disease status was determined by histpathology based on inflammatory cell infiltrate. RNA-seq of both mRNA and miRNA libraries were performed on an Illumina® HiSeq™ 2000. Paired reads were aligned to the bovine genome with Bowtie2 and differentially expressed genes were identified using EdgeR. Significantly over-represented Gene Ontology terms were identified using GO-seq, and pathway analysis was performed using KEGG. Quanititative real-time PCR was also performed for validation (ABI 7500 fast). Haematology was assessed using an automated ADVIA 2120 analyser. Serum proteins were evaluated by ELISA and metabolite analysis was performed using a Beckman Coulter AU 400 clinical analyser. Terminal-restriction fragment length polymorphism (T-RFLP) was used to obtain fingerprints of the microbial communities present. Results Next-generation sequencing from endometrial biopsies taken at 7 DPP identified significant induction of inflammatory gene expression in all cows. Despite the common inflammatory profile and enrichment of the Toll-like receptor and NFκB pathways, 73 genes and 31 miRNAs were significantly differentially expressed between healthy cows (HC, n = 9) and cows which subsequently developed CE at 7 DPP (n = 6, FDR < 0.1). While significant differential expression of 4197 genes in the transcriptome of healthy cows between 7 and 21 DPP showed the transition from a proinflammatory to tissue profliferation and repair, only 31 genes were differentially expressed in cows with CE (FDR < 0.1), indicating the arrest of such a transition. A link betwene the dysregulated inflammatory response and the composition of the uterine microbial communities was suggested by the presence of significant differences in uterine bacterial tRFLP profiles between HC and CE groups. Furthermore, inflammatory activity was not confined to the uterus; decreased circulating granulocytes and increased Acute Phase Protein (SAA and HP) expression levels were detected in plasma at 7 DPP in cows that developed CE. Conclusion Our data suggests that the IL1 and IL17 inflammatory cascade activated early postpartum is resolved thereby restoring homeostasis in healthy cows by 21 DPP, but this transition fails to occur in cows which develop CE. Despite a common early inflammatory profile, elevated and differential expression of specific immune genes may identify cows at risk of prolonged inflammation and the development of CE postpartum.
    • Integrated analysis of the local and systemic changes preceding the development of post-partum cytological endometritis

      Foley, Cathriona; Chapwanya, Aspinas; Callanan, John J; Whiston, Ronan; Miranda-CasoLuengo, Raúl; Lu, Junnan; Meijer, Wim G; Lynn, David J; O'Farrelly, Cliona; Meade, Kieran G (Biomed Central, 2015-10-19)
      Background The regulation of endometrial inflammation has important consequences for the resumption of bovine fertility postpartum. All cows experience bacterial influx into the uterus after calving; however a significant proportion fail to clear infection leading to the development of cytological endometritis (CE) and compromised fertility. We hypothesised that early immunological changes could not only act as potential prognostic biomarkers for the subsequent development of disease but also shed light on the pathogenesis of endometritis in the postpartum dairy cow. Methods Endometrial biopsy RNA was extracted from 15 cows at 7 and 21 days postpartum (DPP), using the Qiagen RNeasy® Plus Mini kit and quality determined using an Agilent 2100 bioanalyser. Disease status was determined by histpathology based on inflammatory cell infiltrate. RNA-seq of both mRNA and miRNA libraries were performed on an Illumina® HiSeq™ 2000. Paired reads were aligned to the bovine genome with Bowtie2 and differentially expressed genes were identified using EdgeR. Significantly over-represented Gene Ontology terms were identified using GO-seq, and pathway analysis was performed using KEGG. Quanititative real-time PCR was also performed for validation (ABI 7500 fast). Haematology was assessed using an automated ADVIA 2120 analyser. Serum proteins were evaluated by ELISA and metabolite analysis was performed using a Beckman Coulter AU 400 clinical analyser. Terminal-restriction fragment length polymorphism (T-RFLP) was used to obtain fingerprints of the microbial communities present. Results Next-generation sequencing from endometrial biopsies taken at 7 DPP identified significant induction of inflammatory gene expression in all cows. Despite the common inflammatory profile and enrichment of the Toll-like receptor and NFκB pathways, 73 genes and 31 miRNAs were significantly differentially expressed between healthy cows (HC, n = 9) and cows which subsequently developed CE at 7 DPP (n = 6, FDR < 0.1). While significant differential expression of 4197 genes in the transcriptome of healthy cows between 7 and 21 DPP showed the transition from a proinflammatory to tissue profliferation and repair, only 31 genes were differentially expressed in cows with CE (FDR < 0.1), indicating the arrest of such a transition. A link betwene the dysregulated inflammatory response and the composition of the uterine microbial communities was suggested by the presence of significant differences in uterine bacterial tRFLP profiles between HC and CE groups. Furthermore, inflammatory activity was not confined to the uterus; decreased circulating granulocytes and increased Acute Phase Protein (SAA and HP) expression levels were detected in plasma at 7 DPP in cows that developed CE. Conclusion Our data suggests that the IL1 and IL17 inflammatory cascade activated early postpartum is resolved thereby restoring homeostasis in healthy cows by 21 DPP, but this transition fails to occur in cows which develop CE. Despite a common early inflammatory profile, elevated and differential expression of specific immune genes may identify cows at risk of prolonged inflammation and the development of CE postpartum.
    • Integrated analysis of the local and systemic changes preceding the development of post-partum cytological endometritis

      Foley, Cathriona; Chapwanya, Aspinas; Callanan, John J; Whiston, Ronan; Miranda-CasoLuengo, Raúl; Lu, Junnan; Meijer, Wim G; Lynn, David J; O'Farrelly, Cliona; Meade, Kieran G (Biomed Central, 2015-10-19)
      Background The regulation of endometrial inflammation has important consequences for the resumption of bovine fertility postpartum. All cows experience bacterial influx into the uterus after calving; however a significant proportion fail to clear infection leading to the development of cytological endometritis (CE) and compromised fertility. We hypothesised that early immunological changes could not only act as potential prognostic biomarkers for the subsequent development of disease but also shed light on the pathogenesis of endometritis in the postpartum dairy cow. Methods Endometrial biopsy RNA was extracted from 15 cows at 7 and 21 days postpartum (DPP), using the Qiagen RNeasy® Plus Mini kit and quality determined using an Agilent 2100 bioanalyser. Disease status was determined by histpathology based on inflammatory cell infiltrate. RNA-seq of both mRNA and miRNA libraries were performed on an Illumina® HiSeq™ 2000. Paired reads were aligned to the bovine genome with Bowtie2 and differentially expressed genes were identified using EdgeR. Significantly over-represented Gene Ontology terms were identified using GO-seq, and pathway analysis was performed using KEGG. Quanititative real-time PCR was also performed for validation (ABI 7500 fast). Haematology was assessed using an automated ADVIA 2120 analyser. Serum proteins were evaluated by ELISA and metabolite analysis was performed using a Beckman Coulter AU 400 clinical analyser. Terminal-restriction fragment length polymorphism (T-RFLP) was used to obtain fingerprints of the microbial communities present. Results Next-generation sequencing from endometrial biopsies taken at 7 DPP identified significant induction of inflammatory gene expression in all cows. Despite the common inflammatory profile and enrichment of the Toll-like receptor and NFκB pathways, 73 genes and 31 miRNAs were significantly differentially expressed between healthy cows (HC, n = 9) and cows which subsequently developed CE at 7 DPP (n = 6, FDR < 0.1). While significant differential expression of 4197 genes in the transcriptome of healthy cows between 7 and 21 DPP showed the transition from a proinflammatory to tissue profliferation and repair, only 31 genes were differentially expressed in cows with CE (FDR < 0.1), indicating the arrest of such a transition. A link betwene the dysregulated inflammatory response and the composition of the uterine microbial communities was suggested by the presence of significant differences in uterine bacterial tRFLP profiles between HC and CE groups. Furthermore, inflammatory activity was not confined to the uterus; decreased circulating granulocytes and increased Acute Phase Protein (SAA and HP) expression levels were detected in plasma at 7 DPP in cows that developed CE. Conclusion Our data suggests that the IL1 and IL17 inflammatory cascade activated early postpartum is resolved thereby restoring homeostasis in healthy cows by 21 DPP, but this transition fails to occur in cows which develop CE. Despite a common early inflammatory profile, elevated and differential expression of specific immune genes may identify cows at risk of prolonged inflammation and the development of CE postpartum.
    • An integrated assessment of nitrogen source, transformation and fate within an intensive dairy system to inform management change

      Clagnan, Elisa; Thornton, Steven F.; Rolfe, Stephen A.; Wells, Naomi S.; Knoeller, Kay; Murphy, John; Tuohy, Patrick; Daly, Karen M.; Healy, Mark G.; Ezzati, Golnaz; et al. (Public Library of Science (PLoS), 2019-07-23)
      From an environmental perspective optimised dairy systems, which follow current regulations, still have low nitrogen (N) use efficiency, high N surplus (kg N ha-1) and enable ad-hoc delivery of direct and indirect reactive N losses to water and the atmosphere. The objective of the present study was to divide an intensive dairy farm into N attenuation capacity areas based on this ad-hoc delivery. Historical and current spatial and temporal multi-level datasets (stable isotope and dissolved gas) were combined and interpreted. Results showed that the farm had four distinct attenuation areas: high N attenuation: characterised by ammonium-N (NH4+-N) below 0.23 mg NH4+-N l-1 and nitrate (NO3--N) below 5.65 mg NO3--N l-1 in surface, drainage and groundwater, located on imperfectly to moderately-well drained soils with high denitrification potential and low nitrous oxide (N2O) emissions (av. 0.0032 mg N2O-N l-1); moderate N attenuation: characterised by low NO3--N concentration in drainage water but high N2O production (0.0317 mg N2O-N l-1) and denitrification potential lower than group 1 (av. δ15N-NO3-: 16.4‰, av. δ18O-NO3-: 9.2‰), on well to moderately drained soils; low N attenuation—area 1: characterised by high NO3--N (av. 6.90 mg NO3--N l-1) in drainage water from well to moderately-well drained soils, with low denitrification potential (av. δ15N-NO3-: 9.5‰, av. δ18O-NO3-: 5.9‰) and high N2O emissions (0.0319 mg N2O l-1); and low N attenuation—area 2: characterised by high NH4+-N (av. 3.93 mg NH4+-N l-1 and high N2O emissions (av. 0.0521 mg N2O l-1) from well to imperfectly drained soil. N loads on site should be moved away from low attenuation areas and emissions to air and water should be assessed.
    • Integration of high and low field 1H NMR to analyse the effects of bovine dietary regime on milk metabolomics and protein-bound moisture characterisation of the resulting mozzarella cheeses during ripening

      Boiani, Mattia; Sundekilde, Ulrik; Bateman, Lorraine M.; McCarthy, Daniel G.; Maguire, Anita R.; Gulati, Arunima; Guinee, Timothy P.; Fenelon, Mark; Hennessy, Deirdre; Fitzgerald, Richard J.; et al. (Elsevier, 2018-10-11)
      The influence of dairy cow feeding regime was investigated using 1H nuclear magnetic resonance (NMR). Two different NMR analytical systems were deployed: high field 1H NMR to investigate the influence on milk metabolomics and low field NMR to characterise proton relaxation linked to changes in the state of mozzarella cheese moisture during ripening. The metabolomics results showed that grass-based feeding increased the concentration of a biological marker that signifies near-organic milk production conditions. On the other hand, the investigation of cheese moisture distribution showed that grass-based diets reached final moisture partitioning in a shorter time, which implied the formation of a more compact protein structure in the cheese matrix. These results indicate that pasture-based dairying may be differentiated in terms of the provenance of milk produced along with the accrual of additional benefits during ripening of the resulting mozzarella cheeses.
    • The integration of ‘omic’ disciplines and systems biology in cattle breeding

      Berry, Donagh; Meade, Kieran G; Mullen, Michael P.; Butler, Stephen T.; Diskin, Michael G.; Morris, Dermot G.; Creevey, Christopher J.; Science Foundation Ireland; 07/SRC/B1156 (Cambridge University Press, 2010-10)
      Enormous progress has been made in the selection of animals, including cattle, for specific traits using traditional quantitative genetics approaches. Never the less, considerable variation in phenotypes remains unexplained, and therefore represents potential additional gain for animal production. In addition, the paradigm shift in new disciplines now being applied to animal breeding represents a powerful opportunity to prise open the ‘black box’ underlying the response to selection and fully understand the genetic architecture controlling the traits of interest. A move away from traditional approaches of animal breeding toward systems approaches using integrative analysis of data from the ‘omic’ disciplines represents a multitude of exciting opportunities for animal breeding going forward as well as providing alternatives for overcoming some of the limitations of traditional approaches such as the expressed phenotype being an imperfect predictor of the individual’s true genetic merit, or the phenotype being only expressed in one gender or late in the lifetime of an animal. This review aims to discuss these opportunities from the perspective of their potential application and contribution to cattle breeding. Harnessing the potential of this paradigm shift also poses some new challenges for animal scientists – and they will also be discussed
    • Inter- and intra-reproducibility of genotypes from sheep technical replicates on Illumina and Affymetrix platforms

      Berry, Donagh; O'Brien, Aine; Wall, E.; McDermott, Kevin; Randles, Shane; Flynn, Paul; Park, Stephen D. E.; Grose, Jenny; Weld, Rebecca; McHugh, Noirin; et al. (Biomed Central, 2016-11-10)
      Background Accurate genomic analyses are predicated upon access to accurate genotype input data. The objective of this study was to quantify the reproducibility of genotype data that are generated from the same genotype platform and from different genotyping platforms. Methods Genotypes based on 51,121 single nucleotide polymorphisms (SNPs) for 84 animals that were each genotyped on Illumina and Affymetrix platforms and for another 25 animals that were each genotyped twice on the same Illumina platform were compared. Genotypes based on 11,323 SNPs for an additional 21 animals that were genotyped on two different Illumina platforms by two different service providers were also compared. Reproducibility of the results was measured as the correlation between allele counts and as genotype and allele concordance rates. Results A mean within-animal correlation of 0.9996 was found between allele counts in the 25 duplicate samples that were genotyped on the same Illumina platform and varied from 0.9963 to 1.0000 per animal. The mean (minimum, maximum) genotype and allele concordance rates per animal between the 25 duplicate samples were equal to 0.9996 (0.9968, 1.0000) and 0.9993 (0.9937, 1.0000), respectively. The concordance rate between the two different Illumina platforms was also near 1. A mean within-animal correlation of 0.9738 was found between genotypes that were generated on the Illumina and Affymetrix platforms and varied from 0.9505 to 0.9812 per animal. The mean (minimum, maximum) within-animal genotype and allele concordance rates between the Illumina and Affymetrix platforms were equal to 0.9711 (0.9418, 0.9798) and 0.9845 (0.9695, 0.9889), respectively. The genotype concordance rate across all genotypes increased from 0.9711 to 0.9949 when the SNPs used were restricted to those with three high-resolution genotype clusters which represented 75.2% of the called genotypes. Conclusions and implications Our results suggest that, regardless of the genotype platform or service provider, high genotype concordance rates are achieved especially if they are restricted to high-quality extracted DNA and SNPs that result in high-quality genotypes.
    • Inter-relationships among alternative definitions of feed efficiency in grazing lactating dairy cows

      Hurley, A. M.; Lopez-Villalobos, N.; McParland, Sinead; Kennedy, Emer; Lewis, Eva; O'Donovan, Michael; Burke, Jennifer L.; Berry, Donagh; Department of Agriculture, Food and the Marine; Marie Curie project (Elsevier for American Dairy Science Association, 2015-11-14)
      International interest in feed efficiency, and in particular energy intake and residual energy intake (REI), is intensifying due to a greater global demand for animal-derived protein and energy sources. Feed efficiency is a trait of economic importance, and yet is overlooked in national dairy cow breeding goals. This is due primarily to a lack of accurate data on commercial animals, but also a lack of clarity on the most appropriate definition of the feed intake and utilization complex. The objective of the present study was to derive alternative definitions of energetic efficiency in grazing lactating dairy cows and to quantify the inter-relationships among these alternative definitions. Net energy intake (NEI) from pasture and concentrate intake was estimated up to 8 times per lactation for 2,693 lactations from 1,412 Holstein-Friesian cows. Energy values of feed were based on the French Net Energy system where 1 UFL is the net energy requirements for lactation equivalent of 1 kg of air-dry barley. A total of 8,183 individual feed intake measurements were available. Energy balance was defined as the difference between NEI and energy expenditure. Efficiency traits were either ratio-based or residual-based; the latter were derived from least squares regression models. Residual energy intake was defined as NEI minus predicted energy to fulfill the requirements for the various energy sinks. The energy sinks (e.g., NEL, metabolic live weight) and additional contributors to energy kinetics (e.g., live weight loss) combined, explained 59% of the variation in NEI, implying that REI represented 41% of the variance in total NEI. The most efficient 10% of test-day records, as defined by REI (n = 709), on average were associated with a 7.59 UFL/d less NEI (average NEI of the entire population was 16.23 UFL/d) than the least efficient 10% of test-day records based on REI (n = 709). Additionally, the most efficient 10% of test-day records, as defined by REI, were associated with superior energy conversion efficiency (ECE, i.e., NEL divided by NEI; ECE = 0.55) compared with the least efficient 10% of test-day records (ECE = 0.33). Moreover, REI was positively correlated with energy balance, implying that more negative REI animals (i.e., deemed more efficient) are expected to be, on average, in greater negative energy balance. Many of the correlations among the 14 defined efficiency traits differed from unity, implying that each trait is measuring a different aspect of efficiency.
    • International genetic evaluations for feed intake in dairy cattle through the collation of data from multiple sources

      Berry, Donagh; Coffey, Mike P.; Pryce, J. E.; de Haas, Y.; Lovendahl, P.; Krattenmacher, N.; Crowley, J.J.; Wang, Z.; Spurlock, D.; Weigel, K.; et al. (Elsevier for American Dairy Science Association, 2014-04-13)
      Feed represents a large proportion of the variable costs in dairy production systems. The omission of feed intake measures explicitly from national dairy cow breeding objectives is predominantly due to a lack of information from which to make selection decisions. However, individual cow feed intake data are available in different countries, mostly from research or nucleus herds. None of these data sets are sufficiently large enough on their own to generate accurate genetic evaluations. In the current study, we collate data from 10 populations in 9 countries and estimate genetic parameters for dry matter intake (DMI). A total of 224,174 test-day records from 10,068 parity 1 to 5 records of 6,957 cows were available, as well as records from 1,784 growing heifers. Random regression models were fit to the lactating cow test-day records and predicted feed intake at 70 d postcalving was extracted from these fitted profiles. The random regression model included a fixed polynomial regression for each lactation separately, as well as herd-year-season of calving and experimental treatment as fixed effects; random effects fit in the model included individual animal deviation from the fixed regression for each parity as well as mean herd-specific deviations from the fixed regression. Predicted DMI at 70 d postcalving was used as the phenotype for the subsequent genetic analyses undertaken using an animal repeatability model. Heritability estimates of predicted cow feed intake 70 d postcalving was 0.34 across the entire data set and varied, within population, from 0.08 to 0.52. Repeatability of feed intake across lactations was 0.66. Heritability of feed intake in the growing heifers was 0.20 to 0.34 in the 2 populations with heifer data. The genetic correlation between feed intake in lactating cows and growing heifers was 0.67. A combined pedigree and genomic relationship matrix was used to improve linkages between populations for the estimation of genetic correlations of DMI in lactating cows; genotype information was available on 5,429 of the animals. Populations were categorized as North America, grazing, other low input, and high input European Union. Albeit associated with large standard errors, genetic correlation estimates for DMI between populations varied from 0.14 to 0.84 but were stronger (0.76 to 0.84) between the populations representative of high-input production systems. Genetic correlations with the grazing populations were weak to moderate, varying from 0.14 to 0.57. Genetic evaluations for DMI can be undertaken using data collated from international populations; however, genotype-by-environment interactions with grazing production systems need to be considered.
    • Intestinal microbiota profiles associated with low and high residual feed intake in chickens across two geographical locations

      Siegerstetter, Sina-Catherine; Schmitz-Esser, Stephan; Magowan, Elizabeth; Wetzels, Stefanie Urimare; Zebeli, Qendrim; Lawlor, Peadar G; O'Connell, Niamh E.; Metzler-Zebeli, Barbara U.; European Union; 311794 (PLOS, 2017-11-15)
      Intestinal microbe-host interactions can affect the feed efficiency (FE) of chickens. As inconsistent findings for FE-associated bacterial taxa were reported across studies, the present objective was to identify whether bacterial profiles and predicted metabolic functions that were associated with residual feed intake (RFI) and performance traits in female and male chickens were consistent across two different geographical locations. At six weeks of life, the microbiota in ileal, cecal and fecal samples of low (n = 34) and high (n = 35) RFI chickens were investigated by sequencing the V3-5 region of the 16S rRNA gene. Location-associated differences in α-diversity and relative abundances of several phyla and genera were detected. RFI-associated bacterial abundances were found at the phylum and genus level, but differed among the three intestinal sites and between males and females. Correlation analysis confirmed that, of the taxonomically classifiable bacteria, Lactobacillus (5% relative abundance) and two Lactobacillus crispatus-OTUs in feces were indicative for high RFI in females (P < 0.05). In males, Ruminococcus in cecal digesta (3.1% relative abundance) and Dorea in feces (<0.1% relative abundance) were best indicative for low RFI, whereas Acinetobacter in feces (<1.5% relative abundance) related to high RFI (P < 0.05). Predicted metabolic functions in feces of males confirmed compositional relationships as functions related to amino acid, fatty acid and vitamin metabolism correlated with low RFI, whereas an increasing abundance of bacterial signaling and interaction (i.e. cellular antigens) genes correlated with high RFI (P < 0.05). In conclusion, RFI-associated bacterial profiles could be identified across different geographical locations. Results indicated that consortia of low- abundance taxa in the ileum, ceca and feces may play a role for FE in chickens, whereby only bacterial FE-associations found in ileal and cecal digesta may serve as useful targets for dietary strategies.
    • Intra-Group Lethal Gang Aggression in Domestic Pigs (Sus scrofa domesticus)

      Camerlink, Irene; Chou, Jen-Yun; Turner, Simon P.; European Cooperation in Science and Technology; Scottish Government Strategic Research (MDPI AG, 2020-07-28)
      Intraspecific coalitional aggression is rare among all species, especially within stable social groups. We report here numerous cases of intraspecific lethal gang aggression within stable groups of domestic pigs. The objective was to describe this extreme aggression and to identify potential causes. Management data were collected from farms with (n = 23) and without (n = 19) gang aggression. From one farm, 91 victims were assessed for skin injuries and body condition score. Lethal gang aggression was significantly associated with deep straw bedding, which may be related to various other factors. Gang aggression tended to occur more in winter, and was unrelated to genetic line, breeding company, group size or feed type. It occurred equally in female-only and mixed sex groups (male-only groups were not represented), from around eight weeks of age. Injuries typically covered the whole body and were more severe on the front of the body. Victims who survived had a lower body condition score and fewer injuries than victims found dead. There are still many unknowns as to why this abnormal social behaviour occurs and it deserves further research attention, both for its applied relevance to animal welfare as for the evolutionary background of lethal gang aggression.
    • Investigating early life microbial and host transcriptomic dynamics in the bovine gastrointestinal tract

      O'Hara, Eoin (Department of Agriculture, Food, and Nutritional Science - University of Alberta, 2019)
      There is increasing concern surrounding the ability of livestock industries to meet the needs of the rising global population. The gastrointestinal microbiota of ruminants plays a critical role in feed degradation, host energy supply, but is also a substantial source of anthropogenic greenhouse gas emissions. It is proposed that dietary intervention during the first weeks of life may offer an opportunity to permanently manipulate microbial colonisation patterns of the rumen, with a view to enhancing host performance whilst mitigating climatic impacts. However, the optimum window for intervention remains to be elucidated. Despite the close relationship between the rumen and its microbes, understanding of the molecular controls of rumen development during early life is limited. In mature animals, microbial fermentation in the rumen is the principle host energy source, but the hindgut and its microbiome may play of increased importance while the rumen develops during early life. However, little is known of the hindgut microbiota and its contribution to animal growth. Study 1 investigated the temporal dynamics of the rumen microbiota in beef calves during early life using 16S rRNA sequencing, to characterise the patterns of microbial establishment in the rumen and identify the most favourable timeframe for dietary manipulation. The microbial community displayed an ordered pattern of succession during the first 3 weeks of life, but settled by day 21, indicating that this may be the limit of any timeframe for early life manipulation. Study 1 also revealed a substantial farm effect on the colonisation of certain microbial groups, including Methanobrevibacter smithii (P<0.05) and Dialister (P<0.05). Such an effect has not been reported previously and may have substantial implications in future manipulation efforts. Study 2 characterised the transcriptomic profile of rumen tissue from birth to post weaning, revealing significant enrichment in immune related genes (e.g. TLR5, LAP, TAP) and processes following birth (P<0.05). This was not associated with any depression in known tight junction genes (P>0.05), indicating that rumen permeability was not compromised. Further exploring the relationship between microbial colonisation and rumen immune function may offer an opportunity to manipulate the establishment of certain taxa. Solid feed allocation was associated with enhanced expression of genes involved in Volatile Fatty Acid (VFA) absorption (MCT1; P<0.05) and metabolism (BDH1, ACAT; P<0.05). Understanding the mechanistic control of VFA absorption and how it changes during the life-cycle of the animal will be key for the design of optimal calf nutrition strategies. Study 3 characterised the hindgut microbiota of young ruminants, and its response to fortification of milk replacer with sodium butyrate (SB). The trophic effect of butyrate on calf growth and feed efficiency (P<0.1) was associated with increased concentrations of total VFA, propionate and acetate (P<0.05) in the hindgut. Native butyrogenic bacteria Butyrivibrio and Shuttleworthia were decreased by SB (P<0.05), while the proportion of the propionate producer Phascolarctobacterium was higher (P<0.05). Mogibacterium is associated with impaired gut health and was reduced in the cecum of SB calves (P<0.05). These data show that the beneficial effects of SB on growth and performance occur in tandem with changes in the abundance of important SCFA producing and health-associated bacteria in the hindgut in milk-fed calves, and that SB supplementation may suppress butyrate biosynthesis in the gut. Therefore, efforts to improve animal performance via early life manipulation should also consider the hindgut compartments, as this may offer a method to improve animal performance during the milk-feeding period. In summary, the data presented in this thesis contributes to understanding of rumen microbial composition and molecular development during early life and shows that enhanced activity of the hindgut microbiota may contribute to early life calf growth.
    • Investigating the role of stocking rate and prolificacy potential on profitability of grass based sheep production systems

      Bohan, A.; Creighton, Philip; Boland, T.M.; Shalloo, Laurence; Earle, Elizabeth; McHugh, Noirin; Department of Agriculture, Food and the Marine; 15/S/696 (Elsevier BV, 2018-02-21)
      The objective of this study was to simulate and compare the profitability of a grass based sheep production system under three stocking rates and two prolificacy rates. Analysis was conducted using the Teagasc Lamb Production Model (TLPM), a stochastic budgetary simulation model of a sheep farm. Experimental data from the Teagasc Athenry Research Demonstration Flock was used to parameterise the model at three stocking rates (10, 12 and 14 ewes/ha) and two prolificacy potentials (1.5 and 1.8 lambs weaned per ewe joined to the ram). The TLPM assessed the performance of the key factors affecting profitability and was also used to evaluate the spread in profitability associated with some stochastic variables included in the analysis. The number of lambs weaned per hectare increased with stocking rate and prolificacy potential from 16 lambs/ha to 27 lambs/ha resulting in carcass weight produced per hectare ranging from 272 kg/ha to 474 kg/ha. Increasing stocking rates resulted in lower individual lamb performance from grass and milk, thereby increasing the proportion of lambs which required concentrate for finishing, which resulted in higher input costs on a per animal basis. As the number of lambs weaned per hectare increased, net profit increased from €361/ha to €802/ha. Across all stocking rates, increasing weaning rate from 1.5 to 1.8 lambs weaned per ewe joined increased net profit, on average, by €336/ha. Increasing stocking rate, at 1.5 lambs weaned per ewe joined, increased net profit on average by €15/ha while increasing stocking rate, at 1.8 lambs weaned per ewe joined increased net profit on average by €87/ha. Risk analysis showed that across all stocking rates the high prolificacy scenarios achieved greater profits across the variation in input variables. Results from this study indicate that lambs weaned per hectare linked with grass growth and utilisations are the key drivers of profitability on Irish grass based sheep production systems.
    • An investigation into the factors associated with ewe colostrum production

      Campion, Frank P.; Crosby, Thomas F.; Creighton, Philip; Fahey, Alan G.; Boland, Tommy M.; Teagasc Walsh Fellowship Programme (Elsevier BV, 2019-09)
      The majority of lamb mortality which occurs during the first 24 h post-partum is preventable through providing the lamb with sufficient quantities of high quality colostrum during this time. Data from seven late gestation nutrition experiments carried out at this institute between 2002 and 2014 were collated into a single data set comprising of 415 twin bearing ewes. Analysis was carried out to investigate the key drivers of ewe colostrum production excluding nutrient intake, namely body reserve mobilisation, ewe breed type, ewe age, gestation length and lamb birth weight. The volume of colostrum produced at 1 and 18 h post-partum was significantly lower than the volume recorded at 10 h post-partum (P = 0.01). Multivariate regression analysis indicated that colostrum volume during the first 18 h post-partum was influenced by lamb birth weight (P = 0.01), ewe age (P = 0.01), breed type (P = 0. 01) and gestation length (P = 0.06). Live weight change (P = 0.05) also had a significant influence on the volume of colostrum produced but BCS change did not affect colostrum production (P = 0.25). Further multivariate regression analysis indicated that IgG yield was influenced ewe breed type (P = 0.01), lamb birth weight (P = 0.02), gestation length (P = 0.05) and BCS change (P = 0.04). Live weight change (P = 0.12) and ewe age (P = 0.62) did not influence the quantity of IgG produced. Leicester ewes produced less colostrum per kg lamb birth weight at 1 h post-partum compared to all other ewe breed types (P = 0.01) and less than Suffolk ewes at 10 h post-partum (P = 0.01). The result of this analysis shows the key factors excluding ewe nutrition that drive colostrum production. Ewe breed type in particular appears to play an important role in the ability of the ewe to produce sufficient quantities of adequate quality colostrum. In conclusion the result of this analysis highlights the important factors associated with ewe colostrum volume and IgG yield excluding nutrition. In particular the overall structure of the flock such as breed type and ewe age is important when considering the ability of the flock to meet colostrum demands and hence reduce lamb mortality.
    • Investigation of molecular mechanisms underlying tetracycline resistance in thermophilic Campylobacter spp. suggests that previous reports of tet(A)-mediated resistance in these bacteria are premature

      Lynch, Caoimhe; Hawkins, Kayleigh; Lynch, Helen; Egan, John; Bolton, Declan; Coffey, Aidan; Lucey, Brigid; Department of Agriculture, Food and the Marine; Teagasc Walsh Fellowship Programme; Ref. 15/F/641; et al. (Springer Science and Business Media LLC, 2019-11-09)
      The true prevalence of tet(A), which codes for a tetracycline efflux pump, in thermophilic Camplyobacter spp. requires clarification after reports emerged in Iran (2014) and Kenya (2016) of the novel detection of tet(A) in Campylobacter. During our investigation of antibiotic resistance mechanisms in a sample of Irish thermophilic Campylobacter broiler isolates, it was determined that 100% of tetracycline-resistant isolates (n = 119) harboured tet(O). Accessory tetracycline-resistance mechanisms were considered as tetracycline minimum inhibitory concentrations ranged from 4 to ≥ 64 mg/L. Primers previously reported for the detection of tet(A) in Campylobacter failed to produce an amplicon using a positive control strain (Escherichia coli K12 SK1592 containing the pBR322 plasmid) and a selection of Campylobacter isolates. Accordingly, we designed new tet(A)-targeting primers on SnapGene2.3.2 that successfully generated a 407 bp product from the positive control strain only. Further in silico analysis using BLASTn and SnapGene2.3.2 revealed that previously reported Campylobacter tet(A) sequences deposited on GenBank shared 100% homology with Campylobacter tet(O). We postulate that this gave rise to the erroneous report of a high tet(A) prevalence among a pool of Kenyan broiler Campylobacter isolates that were tested using primers designed based on these apparent tet(A) sequences. In conclusion, further work would be required to determine whether the homology between tet(A) potentially present in Campylobacter and known tet(A) genes would be sufficient to allow amplification using the primers designed in our study. Finally, the existence of tet(A) in thermophilic Campylobacter spp. remains to be demonstrated.
    • Investigation of Prolific Sheep from UK and Ireland for Evidence on Origin of the Mutations in BMP15 (FecXG, FecXB) and GDF9 (FecGH) in Belclare and Cambridge Sheep

      Mullen, Michael P.; Hanrahan, James P; Dawn, J. Howard; Powell, Richard; Teagasc Walsh Fellowship Programme; Genesis Faraday SPARK award; Science Foundation Ireland; 07/SRC/B1156 (PLoS, 2013-01-02)
      This paper concerns the likely origin of three mutations with large effects on ovulation rate identified in the Belclare and Cambridge sheep breeds; two in the BMP15 gene (FecXG and FecXB) and the third (FecGH) in GDF9. All three mutations segregate in Belclare sheep while one, FecXB, has not been found in the Cambridge. Both Belclare and Cambridge breeds are relatively recently developed composites that have common ancestry through the use of genetic material from the Finnish Landrace and Lleyn breeds. The development of both composites also involved major contributions from exceptionally prolific ewes screened from flocks in Ireland (Belclare) and Britain (Cambridge) during the 1960s. The objective of the current study was to establish the likely origin of the mutations (FecXG, FecXB and FecGH) through analysis of DNA from Finnish Landrace and Lleyn sheep, and Galway and Texel breeds which contributed to the development of the Belclare breed. Ewes with exceptionally high prolificacy (hyper-prolific ewes) in current flocks on Irish farms were identified to simulate the screening of ewes from Irish flocks in the 1960s. DNA was obtained from: prolific ewes in extant flocks of Lleyn sheep (n = 44) on the Lleyn peninsula in Wales; hyper-prolific ewes (n = 41); prolific Galway (n = 41) ewes; Finnish Landrace (n = 124) and Texel (n = 19) ewes. The FecXG mutation was identified in Lleyn but not in Finnish Landrace, Galway or Texel sheep; FecXB was only found among the hyper-prolific ewes. The FecGH mutation was identified in the sample of Lleyn sheep. It was concluded from these findings that the Lleyn breed was the most likely source of the FecXG and FecGH mutations in Belclare and Cambridge sheep and that the FecXB mutation came from the High Fertility line that was developed using prolific ewes selected from commercial flocks in Ireland in the 1960′s and subsequently used in the genesis of the Belclare.