Gene co-expression networks contributing to reproductive development in Holstein-Friesian bull calves
Name:
Gene-co-expression-networks-co ...
Size:
2.295Mb
Format:
PDF
Description:
main article
Keyword
Adipose tissueCalf-hood nutrition
Hypothalamus-pituitary–testicular axis
Metabolic status
Reproductive development
Date
2022-05-31
Metadata
Show full item recordStatistics
Display Item StatisticsCitation
K. Keogh, D.A. Kenny, Gene co-expression networks contributing to reproductive development in Holstein-Friesian bull calves, animal, Volume 16, Issue 5, 2022, 100527, ISSN 1751-7311, https://doi.org/10.1016/j.animal.2022.100527.Abstract
Enhanced early life nutrition stimulates the functionality of the hypothalamic-pituitary–testicular (HPT) biochemical signalling axis, resulting in precocious reproductive development in bull calves. Additionally, there is evidence that peptides and hormones produced within adipose tissue depots are also central in mediating the effect of metabolic status with reproductive development. The objective of this study was to undertake gene co-expression analyses on transcriptional data of the HPT and adipose tissues derived from bull calves fed contrasting planes of nutrition up to 18 weeks of life. The relationship between networks of co-expressed genes in each tissue dataset with calf phenotypic data was also assessed using a Pearson correlation analysis. Phenotypic data were related to metabolic status (systemic concentrations of insulin, leptin, adiponectin and IGF-1) reproductive development (systemic concentrations of testosterone, FSH and LH) and markers of testicular development (seminiferous tubule diameter, seminiferous tubule lumen score, spermatogenic cells and Sertoli cells). In the hypothalamus, gene co-expression networks involved in biochemical signalling processes related to gonadotropin-releasing hormone (GnRH) secretion were positively associated (P < 0.05) with systemic concentrations of IGF-1 and insulin. Similarly, a network of gene transcripts involved in GnRH signalling in the anterior pituitary was positively associated (P < 0.05) with systemic concentrations of LH. In the testes and adipose tissues, networks of co-expressed genes implicated in cholesterol and fatty acid biosynthesis were positively associated (P < 0.05) with lumen score, Sertoli cell number, and stage of spermatogenesis. Additionally, gene co-expression networks significantly associated (P < 0.05) with both metabolic and reproductive trait data were found to be enriched (P < 0.05) for biological pathways related to energy production, cellular growth and proliferation, GnRH signalling and cholesterol biosynthesis across multiple tissues examined. Results from this study highlight networks of co-expressed genes directly associated with markers of enhanced metabolic status and subsequent earlier reproductive development. Furthermore, genes involved in biological processes mentioned above may hold potential for informing genomic selection breeding programmes for the selection of calves capable of displaying earlier reproductive development as a consequence of enhanced dietary intake.Funder
Irish Department of Agriculture, Food and the Marine; Irish Research CouncilGrant Number
11/S/116; Goipg/2013/1391ae974a485f413a2113503eed53cd6c53
https://doi.org/10.1016/j.animal.2022.100527
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as © 2022 The Authors. Published by Elsevier B.V. on behalf of The Animal Consortium.