Show simple item record

dc.contributor.authorWard, Mark
dc.contributor.authorMcDonell, Kevin
dc.contributor.authorMetzger, Konrad
dc.contributor.authorForristal, Patrick Dermot
dc.date.accessioned2023-09-05T11:29:56Z
dc.date.available2023-09-05T11:29:56Z
dc.date.issued2021-06-30
dc.identifier.citationMark Ward, Kevin McDonnell, Konrad Metzger, Patrick Dermot Forristal, The effect of machine traffic zones associated with field headlands on soil structure in a survey of 41 tilled fields in a temperate maritime climate, Soil and Tillage Research, Volume 210, 2021, 104938, ISSN 0167-1987, https://doi.org/10.1016/j.still.2021.104938.en_US
dc.identifier.urihttp://hdl.handle.net/11019/3244
dc.descriptionpeer-revieweden_US
dc.description.abstractMachinery traffic imposes a negative effect on soil structure, leading to soil compaction. Studies to date have primarily focused on the influence of applied wheel loads on soil structure. Few studies have assessed the impact of commercial farm operations on soil structure and crop performance, particularly on field headlands in a temperate maritime climate such as Ireland. A survey was conducted on 41 conventionally managed field sites to investigate the effect of field position (field edge, turning, transition and in-field zones) in relation to machinery operations on soil structure. Soil texture classes ranged from sandy loam to clay loam. All sites used plough-based crop establishment. Soil structural condition was assessed visually using the visual evaluation of soil structure method (VESS) for the topsoil (0−250 mm), and Double Spade below plough depth (250−400 mm). Quantitative soil measurements such as shear strength, bulk density and porosity using soil cores post-harvest, and soil cone penetration resistance were taken at two time points in the crop growth cycle. For most measurements of soil structure, the in-field zone of least machinery traffic produced the best scores (Sq 2.81 & DS 2.48), and the turning zone returned the poorest scores in the 0−250 mm soil layer (Sq 3.31 & DS 2.91). The strongest quantitative scores for the in-field and turning zones, respectively, were for trowel penetration resistance in the upper (2.49 & 3.20) and lower (3.41 & 4.05) soil depth layers and for shear vane (38.17 & 53.59 kPa) for the same zones. The visual assessments and some of the quantitative measurements (0−250 mm soil layer) followed the zone order trend of: turning, field edge, transition and in-field, for increasing machinery traffic. The results show that the visual soil indicators used in this study are more sensitive than quantitative soil measurements such as soil bulk density (ρb) or porosity (TP and MP) at detecting soil structural differences between zones, particularly below plough depth (>250 mm soil depth).en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofseriesSoil and Tillage Research;Vol 210
dc.rights© 2021 The Authors. Published by Elsevier B.V.
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectHeadlanden_US
dc.subjectVisual soil assessmenten_US
dc.subjectSoil structureen_US
dc.subjectCompactionen_US
dc.subjectMachinery trafficen_US
dc.subjectGrain yielden_US
dc.titleThe effect of machine traffic zones associated with field headlands on soil structure in a survey of 41 tilled fields in a temperate maritime climateen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.1016/j.still.2021.104938
dc.contributor.sponsorTeagasc Walsh Fellowship funden_US
dc.source.volume210
dc.source.beginpage104938
refterms.dateFOA2023-09-05T11:29:56Z
dc.source.journaltitleSoil and Tillage Research


Files in this item

Thumbnail
Name:
The-effect-of-machine-traffic- ...
Size:
912.0Kb
Format:
PDF
Description:
main article

This item appears in the following Collection(s)

Show simple item record

© 2021 The Authors. Published by Elsevier B.V.
Except where otherwise noted, this item's license is described as © 2021 The Authors. Published by Elsevier B.V.