Show simple item record

dc.contributor.authorO'Leary, Dave
dc.contributor.authorTouhy, Pat
dc.contributor.authorMellender, P.
dc.contributor.authorFenton, Owen
dc.contributor.authorBrown, Colin
dc.contributor.authorDaly, Eve
dc.date.accessioned2023-10-09T11:04:13Z
dc.date.available2023-10-09T11:04:13Z
dc.date.issued2020-01
dc.identifier.citationO'Leary, Dave, Tuohy, Pat, Mellender, P., Fenton, Owen, Brown, Colin, Daly, Eve. (2020). Potential of machine learning in linking national airborne radiometric data to soil class mapping. 10.13140/RG.2.2.28334.87362/1.en_US
dc.identifier.urihttp://hdl.handle.net/11019/3299
dc.descriptionposter presentationen_US
dc.language.isoenen_US
dc.publisherTeagascen_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.titlePotential of machine learning in linking national airborne radiometric data to soil class mappingen_US
dc.typePresentationen_US
dc.identifier.doi10.13140/RG.2.2.28334.87362/1.
refterms.dateFOA2023-10-09T11:04:15Z


Files in this item

Thumbnail
Name:
Potentialofmachinelearninginli ...
Size:
3.040Mb
Format:
PDF
Thumbnail
Name:
Potentialofmachinelearninginli ...
Size:
3.040Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International