• Atypical Listeria innocua strains possess an intact LIPI-3

      Clayton, Evelyn M; Daly, Karen M.; Guinane, Caitriona M.; Hill, Colin; Cotter, Paul D.; Ross, R Paul; Enterprise Ireland; Science Foundation Ireland; 06/IN.1/B98; 10/IN.1/B3027 (Biomed Central, 08/03/2014)
      Background: Listeria monocytogenes is a food-borne pathogen which is the causative agent of listeriosis and can be divided into three evolutionary lineages I, II and III. While all strains possess the well established virulence factors associated with the Listeria pathogenicity island I (LIPI-1), lineage I strains also possess an additional pathogenicity island designated LIPI-3 which encodes listeriolysin S (LLS), a post-translationally modified cytolytic peptide. Up until now, this pathogenicity island has been identified exclusively in a subset of lineage I isolates of the pathogen Listeria monocytogenes. Results: In total 64 L. innocua strains were screened for the presence of LIPI-3. Here we report the identification of an intact LIPI-3 in 11 isolates of L. innocua and the remnants of the cluster in several others. Significantly, we can reveal that placing the L. innocua lls genes under the control of a constitutive promoter results in a haemolytic phenotype, confirming that the cluster is capable of encoding a functional haemolysin. Conclusions: Although the presence of the LIPI-3 gene cluster is confined to lineage I isolates of L. monocytogenes, a corresponding gene cluster or its remnants have been identified in many L. innocua strains.
    • Bile acids at the cross-roads of gut microbiome–host cardiometabolic interactions

      Ryan, Paul M; Stanton, Catherine; Caplice, Noel M; Science Foundation Ireland; Enterprise Ireland; SFI/12/RC/2273; CF/2013/3030A/B (Biomed Central, 28/12/2017)
      While basic and clinical research over the last several decades has recognized a number of modifiable risk factors associated with cardiometabolic disease progression, additional and alternative biological perspectives may offer novel targets for prevention and treatment of this disease set. There is mounting preclinical and emerging clinical evidence indicating that the mass of metabolically diverse microorganisms which inhabit the human gastrointestinal tract may be implicated in initiation and modulation of cardiovascular and metabolic disease outcomes. The following review will discuss this gut microbiome–host metabolism axis and address newly proposed bile-mediated signaling pathways through which dysregulation of this homeostatic axis may influence host cardiovascular risk. With a central focus on the major nuclear and membrane-bound bile acid receptor ligands, we aim to review the putative impact of microbial bile acid modification on several major phenotypes of metabolic syndrome, from obesity to heart failure. Finally, attempting to synthesize several separate but complementary hypotheses, we will review current directions in preclinical and clinical investigation in this evolving field.
    • In vivo activity of Nisin A and Nisin V against Listeria monocytogenes in mice

      Campion, Alicia; Casey, Patrick G.; Field, Des; Cotter, Paul D.; Hill, Colin; Ross, R Paul; Programme for Research in Third-Level Institutions; Irish Research Council for Science, Engineering and Technology; Enterprise Ireland; Science Foundation Ireland (Biomed Central, 01/02/2013)
      Background: Lantibiotics are post-translationally modified antimicrobial peptides, of which nisin A is the most extensively studied example. Bioengineering of nisin A has resulted in the generation of derivatives with increased in vitro potency against Gram-positive bacteria. Of these, nisin V (containing a Met21Val change) is noteworthy by virtue of exhibiting enhanced antimicrobial efficacy against a wide range of clinical and food-borne pathogens, including Listeria monocytogenes. However, this increased potency has not been tested in vivo. Results: Here we address this issue by assessing the ability of nisin A and nisin V to control a bioluminescent strain of Listeria monocytogenes EGDe in a murine infection model. More specifically, Balb/c mice were infected via the intraperitoneal route at a dose of 1 × 105 cfu/animal and subsequently treated intraperitoneally with either nisin V, nisin A or a PBS control. Bioimaging of the mice was carried out on day 3 of the trial. Animals were then sacrificed and levels of infection were quantified in the liver and spleen. Conclusion: This analysis revealed that nisin V was more effective than Nisin A with respect to controlling infection and therefore merits further investigation with a view to potential chemotherapeutic applications.
    • Microbiome and metabolome modifying effects of several cardiovascular disease interventions in apo-E−/− mice

      Ryan, Paul M; London, Lis E E; Bjorndahl, Trent C; Mandal, Rupasri; Murphy, Kiera; Fitzgerald, Gerald F; Shanahan, Fergus; Ross, R Paul; Wishart, David S; Caplice, Noel M; Stanton, Catherine; Teagasc Walsh Fellowship Programme; Science Foundation Ireland; Enterprise Ireland; Ireland Canada University Foundation (ICUF) Dobbin Scholarship; SFI/12/RC/2273; CF/2013/3030A/B (Biomed Central, 13/03/2017)
      Background There is strong evidence indicating that gut microbiota have the potential to modify, or be modified by the drugs and nutritional interventions that we rely upon. This study aims to characterize the compositional and functional effects of several nutritional, neutraceutical, and pharmaceutical cardiovascular disease interventions on the gut microbiome, through metagenomic and metabolomic approaches. Apolipoprotein-E-deficient mice were fed for 24 weeks either high-fat/cholesterol diet alone (control, HFC) or high-fat/cholesterol in conjunction with one of three dietary interventions, as follows: plant sterol ester (PSE), oat β-glucan (OBG) and bile salt hydrolase-active Lactobacillus reuteri APC 2587 (BSH), or the drug atorvastatin (STAT). The gut microbiome composition was then investigated, in addition to the host fecal and serum metabolome. Results We observed major shifts in the composition of the gut microbiome of PSE mice, while OBG and BSH mice displayed more modest fluctuations, and STAT showed relatively few alterations. Interestingly, these compositional effects imparted by PSE were coupled with an increase in acetate and reduction in isovalerate (p < 0.05), while OBG promoted n-butyrate synthesis (p < 0.01). In addition, PSE significantly dampened the microbial production of the proatherogenic precursor compound, trimethylamine (p < 0.05), attenuated cholesterol accumulation, and nearly abolished atherogenesis in the model (p < 0.05). However, PSE supplementation produced the heaviest mice with the greatest degree of adiposity (p < 0.05). Finally, PSE, OBG, and STAT all appeared to have considerable impact on the host serum metabolome, including alterations in several acylcarnitines previously associated with a state of metabolic dysfunction (p < 0.05). Conclusions We observed functional alterations in microbial and host-derived metabolites, which may have important implications for systemic metabolic health, suggesting that cardiovascular disease interventions may have a significant impact on the microbiome composition and functionality. This study indicates that the gut microbiome-modifying effects of novel therapeutics should be considered, in addition to the direct host effects.