• Comparison of rapid laboratory tests for failure of passive transfer in the bovine

      Hogan, Ian; Doherty, Michael L.; Fagan, John; Kennedy, Emer; Conneely, Muireann; Brady, Paula; Ryan, Clare; Lorenz, Ingrid (Biomed Central, 2015-08-25)
      Background Failure of passive transfer of maternal immunity via colostrum can occur in the bovine, and a number of blood tests have been developed to test calves for this failure. It is not clear which test is most suitable for this purpose. The objective was to examine the most commonly used tests for failure of passive transfer and to decide which is most suitable for routine laboratory use. 126 serum samples were taken from calves of dairy cows after birth but prior to colostrum feeding, and at 48 h of age. Five different tests were compared against radial immunodiffusion which is considered the appropriate reference method. These tests were serum gamma-glutamyltransferase levels, serum protein levels, serum globulin levels, an enzyme linked immunosorbent assay and the zinc sulphate turbidity test. Results The tests examined displayed high sensitivity but widely varying specificity. Examination of the use of different cut-off points allowed some improvement in specificity at the expense of sensitivity, but the tests which had performed best at the original cut-off points still displayed the best performance. Gamma-glutamyltransferase levels as a measure of colostrum absorption returned, in this study, the best balance between sensitivity and specificity. The ELISA used in this study and serum globulin levels displayed performance similar to the gamma-glutamyltransferase levels. Serum total protein was less successful than others examined at providing both sensitivity and specificity but may, when performed via refractometer, be useful for on-farm testing. As currently performed the poor sensitivity for which the zinc sulphate turbidity test is most often criticized is evident. Modification of the cut-off point to increase specificity is less successful at balancing these parameters than the ELISA, gamma-glutamyltransferase levels, and globulin levels. Conclusions Gamma-glutamyltransferase levels, ELISA testing and circulating globulin levels performed best in detecting failure of passive transfer in serum samples, although all three had some practical considerations.
    • Effect of milk feed source, frequency of feeding and age at turnout on calf performance, live-weight at mating and 1st lactation milk production

      Gleeson, David E; O'Brien, Bernadette (Biomed Central, 2012-10-18)
      Female calves (n = 108) were assigned to 6 cold milk feeding treatments in two experiments for a 70-day period. Live-weight (LW) was measured weekly, with an additional LW taken at day 410 and post-calving for animals in experiment 1. In Experiment 1, the effect of feeding frequency and age of turnout to pasture on calf performance and 1st lactation milk yields were evaluated. The whole milk (WM) feeding treatments applied were (i) once daily feeding (OD), (ii) twice daily feeding (TD), (iii) OD feeding, outdoors at 38 days (ODO). In Experiment 2, the effects of feeding milk replacer (MR) as opposed to WM and age of turnout to pasture on calf performance were evaluated. The treatments applied were (i) OD feeding with WM (OD), (ii) OD feeding with milk replacer (MR) (ODMR), (iii) OD feeding with MR, outdoors at 38 days (ODMRO). Experiment 1: There were no differences (P > 0.05) in LW or average daily gain between TD and OD calves at day 80 or 410. ODO calves had lower LW at day 80 as compared to OD or TD (P < 0.001). Calf LW at day 80 was 86, 89 and 85 kg and at day 410 was 304, 309 and 316 kg for OD, TD and ODO, respectively. Milk feeding frequency or time of calf turnout had no effect on LW post calving, milk composition or 1st lactation milk yields. Experiment 2: Total LW at day 80 was higher (P < 0.05) for ODMR compared to OD or ODMRO calves. Calf LW was 87, 95, and 88 kg for OD, ODMR and ODMRO, respectively. However, LW at day 410 did not differ between treatments.This study showed that while some differences were observed in calf LW at day 80, these differences had no effect on LW at day 410 or 1st lactation milk yield. It can be concluded that calves can be successfully reared when fed OD with WM or MR, indoors and when turned out to pasture at 38 days of age.
    • Transcriptomic analysis of the stress response to weaning at housing in bovine leukocytes using RNA-seq technology

      O'Loughlin, Aran; Lynn, David J; McGee, Mark; Doyle, Sean; McCabe, Matthew; Earley, Bernadette; Teagasc Walsh Fellowship Programme (Biomed Central, 2012-06-18)
      Background: Weaning of beef calves is a necessary husbandry practice and involves separating the calf from its mother, resulting in numerous stressful events including dietary change, social reorganisation and the cessation of the maternal-offspring bond and is often accompanied by housing. While much recent research has focused on the physiological response of the bovine immune system to stress in recent years, little is known about the molecular mechanisms modulating the immune response. Therefore, the objective of this study was to provide new insights into the molecular mechanisms underlying the physiological response to weaning at housing in beef calves using Illumina RNA-seq.Results: The leukocyte transcriptome was significantly altered for at least 7 days following either housing or weaning at housing. Analysis of differentially expressed genes revealed that four main pathways, cytokine signalling, transmembrane transport, haemostasis and G-protein-coupled receptor (GPRC) signalling were differentially regulated between control and weaned calves and underwent significant transcriptomic alterations in response to weaning stress on day 1, 2 and 7. Of particular note, chemokines, cytokines and integrins were consistently found to be up-regulated on each day following weaning. Evidence for alternative splicing of genes was also detected, indicating a number of genes involved in the innate and adaptive immune response may be alternatively transcribed, including those responsible for toll receptor cascades and T cell receptor signalling.Conclusions: This study represents the first application of RNA-Seq technology for genomic studies in bovine leukocytes in response to weaning stress. Weaning stress induces the activation of a number of cytokine, chemokine and integrin transcripts and may alter the immune system whereby the ability of a number of cells of the innate and adaptive immune system to locate and destroy pathogens is transcriptionally enhanced. Stress alters the homeostasis of the transcriptomic environment of leukocytes for at least 7 days following weaning, indicating long term effects of stress exposure in the bovine. The identification of gene signature networks that are stress activated provides a mechanistic framework to characterise the multifaceted nature of weaning stress adaptation in beef calves. Thus, capturing subtle transcriptomic changes provides insight into the molecular mechanisms that underlie the physiological response to weaning stress.