• Anthelmintic resistance among gastrointestinal nematodes of cattle on dairy calf to beef farms in Ireland

      Kelleher, Anne C; Good, Barbara; de Waal, Theo; Keane, Orla M; Teagasc Walsh Fellowship Programme (Biomed Central, 2020-07-01)
      Background The control of gastrointestinal nematodes (GIN) of cattle in pasture-based production systems such as Ireland is highly dependent on the availability of efficacious anthelmintics. There is very little information available on the efficacy of the broad-spectrum anthelmintics against GIN of cattle in Ireland and the aim of this study was to determine the prevalence of anthelmintic resistance on dairy calf to beef farms. Results GIN burden was monitored on thirty-six recruited farms by performing herd level faecal egg counts (FEC) every 2 weeks. Of these, nine farms were lost from the study as calves were treated with an anthelmintic for Dictyocaulus viviparus, two were lost as they treated for GIN, one dropped out of the study and on one the herd FEC did not reach the threshold for carrying out the Faecal Egg Count Reduction Test (FECRT). On the remaining 23 farms, once the herd FEC reached 100 eggs per gram, a FECRT was carried out. Pre and post-treatment larval cultures were also performed to identify the GIN to genus level. The efficacy of fenbendazole, levamisole, ivermectin and moxidectin was evaluated on 15, 11, 16 and 11 farms respectively. Resistance to fenbendazole was identified on 9 farms (60%) with resistance suspected on a further farm. Resistance to levamisole, ivermectin and moxidectin was detected on 2 (18%), 16 (100%) and 8 (73%) farms respectively. The predominant genera detected pre and post-treatment were Cooperia and Ostertagia with both genera detected post-treatment with fenbendazole and ivermectin. Due to the low proportion of Ostertagia spp. pre-treatment, the efficacy of levamisole or moxidectin against this genus could not be reliably established. Conclusions Anthelmintic resistance was widespread on the sampled dairy calf to beef farms in Ireland with resistance to benzimidazole, levamisole, ivermectin and moxidectin detected.
    • Association of genetic polymorphisms related to Johne’s disease with estimated breeding values of Holstein sires for milk ELISA test scores

      Mallikarjunappa, Sanjay; Schenkel, Flavio S; Brito, Luiz F; Bissonnette, Nathalie; Miglior, Filippo; Chesnais, Jacques; Lohuis, Michael; Meade, Kieran G; Karrow, Niel A; Semex Alliance; et al. (Biomed Central, 2020-05-27)
      Background Johne’s disease (JD) is a chronic intestinal inflammatory disease caused by Mycobacterium avium subsp. paratuberculosis (MAP) infection in ruminants. Since there are currently no effective vaccine or treatment options available to control JD, genetic selection may be an alternative strategy to enhance JD resistance. Numerous Single Nucleotide Polymorphisms (SNPs) have been reported to be associated with MAP infection status based on published genome-wide association and candidate gene studies. The main objective of this study was to validate these SNPs that were previously identified to be associated with JD by testing their effect on Holstein bulls’ estimated breeding values (EBVs) for milk ELISA test scores, an indirect indicator of MAP infection status in cattle. Results Three SNPs, rs41810662, rs41617133 and rs110225854, located on Bos taurus autosomes (BTA) 16, 23 and 26, respectively, were confirmed as significantly associated with Holstein bulls’ EBVs for milk ELISA test score (FDR < 0.01) based on General Quasi Likelihood Scoring analysis (GQLS) analysis. Single-SNP regression analysis identified four SNPs that were associated with sire EBVs (FDR < 0.05). This includes two SNPs that were common with GQLS (rs41810662 and rs41617133), with the other two SNPs being rs110494981 and rs136182707, located on BTA9 and BTA16, respectively. Conclusions The findings of this study validate the association of SNPs with JD MAP infection status and highlight the need to further investigate the genomic regions harboring these SNPs.
    • Characterization of the bovine salivary gland transcriptome associated with Mycobacterium avium subsp. paratuberculosis experimental challenge

      Mallikarjunappa, Sanjay; Adnane, Mounir; Cormican, Paul; Karrow, Niel A; Meade, Kieran G; Teagasc Walsh Fellowship Programme (Biomed Central, 2019-06-13)
      Background Mycobacterium avium subsp. paratuberculosis (MAP), the etiologic agent of Johne’s disease is spread between cattle via the fecal-oral route, yet the functional changes in the salivary gland associated with infection remain uncharacterized. In this study, we hypothesized that experimental challenge with MAP would induce stable changes in gene expression patterns in the salivary gland that may shed light on the mucosal immune response as well as the regional variation in immune capacity of this extensive gland. Holstein-Friesian cattle were euthanized 33 months’ post oral challenge with MAP strain CIT003 and both the parotid and mandibular salivary glands were collected from healthy control (n = 5) and MAP exposed cattle (n = 5) for histopathological and transcriptomic analysis. Results A total of 205, 21, 61, and 135 genes were significantly differentially expressed between control and MAP exposed cattle in dorsal mandibular (M1), ventral mandibular (M2), dorsal parotid (P1) and ventral parotid salivary glands (P2), respectively. Expression profiles varied between the structurally divergent parotid and mandibular gland sections which was also reflected in the enriched biological pathways identified. Changes in gene expression associated with MAP exposure were detected with significantly elevated expression of BoLA DR-ALPHA, BOLA-DRB3 and complement factors in MAP exposed cattle. In contrast, reduced expression of genes such as polymeric immunoglobin receptor (PIGR), TNFSF13, and the antimicrobial genes lactoferrin (LF) and lactoperoxidase (LPO) was detected in MAP exposed animals. Conclusions This first analysis of the transcriptomic profile of salivary glands in cattle adds an important layer to our understanding of salivary gland immune function. Transcriptomic changes associated with MAP exposure have been identified including reduced LF and LPO. These critical antimicrobial and immunoregulatory proteins are known to be secreted into saliva and their downregulation may contribute to disease susceptibility. Future work will focus on the validation of their expression levels in saliva from additional cattle of known infection status as a potential strategy to augment disease diagnosis.
    • Effect of dietary restriction and subsequent re-alimentation on the transcriptional profile of hepatic tissue in cattle

      Keogh, Kate; Kenny, David A.; Cormican, Paul; Kelly, Alan K; Waters, Sinead M.; Science Foundation Ireland; 09/RFP/GEN2447 (Biomed Central, 2016-03-17)
      Background Compensatory growth (CG) is an accelerated growth phenomenon observed in animals upon re-alimentation following a period of dietary restriction. It is typically utilised in livestock systems to reduce feed costs during periods of reduced feed availability. The biochemical mechanisms controlling this phenomenon, however, are yet to be elucidated. This study aimed to uncover the molecular mechanisms regulating the hepatic expression of CG in cattle, utilising RNAseq. RNAseq was performed on hepatic tissue of bulls following 125 days of dietary restriction (RES) and again following 55 days of subsequent re-alimentation during which the animals exhibited significant CG. The data were compared with those of control animals offered the same diet on an ad libitum basis throughout (ADLIB). Elucidation of the molecular control of CG may yield critical information on genes and pathways which could be targeted as putative molecular biomarkers for the selection of animals with improved CG potential. Results Following a period of differential feeding, body-weight and liver weight were 161 and 4 kg higher, respectively, for ADLIB compared with RES animals. At this time RNAseq analysis of liver tissue revealed 1352 significantly differentially expressed genes (DEG) between the two treatments. DEGs indicated down-regulation of processes including nutrient transport, cell division and proliferation in RES. In addition, protein synthesis genes were up-regulated in RES following a period of restricted feeding. The subsequent 55 days of ad libitum feeding for both groups resulted in the body-weight difference reduced to 84 kg, with no difference in liver weight between treatment groups. At the end of 55 days of unrestricted feeding, 49 genes were differentially expressed between animals undergoing CG and their continuously fed counterparts. In particular, hepatic expression of cell proliferation and growth genes were greater in animals undergoing CG. Conclusions Greater expression of cell cycle and cell proliferation genes during CG was associated with a 100 % recovery of liver weight during re-alimentation. Additionally, an apparent up-regulation in capacity for cellular protein synthesis during restricted feeding may contribute to and sustain CG during re-alimentation. DEGs identified are potential candidate genes for the identification of biomarkers for CG, which may be incorporated into future breeding programmes.
    • Genetics of animal health and disease in cattle

      Berry, Donagh; Bermingham, Mairead L; Good, Margaret; More, Simon J (Biomed Central, 2011-03-31)
      There have been considerable recent advancements in animal breeding and genetics relevant to disease control in cattle, which can now be utilised as part of an overall programme for improved cattle health. This review summarises the contribution of genetic makeup to differences in resistance to many diseases affecting cattle. Significant genetic variation in susceptibility to disease does exist among cattle suggesting that genetic selection for improved resistance to disease will be fruitful. Deficiencies in accurately recorded data on individual animal susceptibility to disease are, however, currently hindering the inclusion of health and disease resistance traits in national breeding goals. Developments in 'omics' technologies, such as genomic selection, may help overcome some of the limitations of traditional breeding programmes and will be especially beneficial in breeding for lowly heritable disease traits that only manifest themselves following exposure to pathogens or environmental stressors in adulthood. However, access to large databases of phenotypes on health and disease will still be necessary. This review clearly shows that genetics make a significant contribution to the overall health and resistance to disease in cattle. Therefore, breeding programmes for improved animal health and disease resistance should be seen as an integral part of any overall national disease control strategy.
    • Genome-wide association study for calving performance using high-density genotypes in dairy and beef cattle

      Purfield, Deirdre C; Bradley, Daniel G; Evans, R. D.; Kearney, Francis; Berry, Donagh; Science Foundation Ireland; Department of Agriculture, Food and the Marine; 09/IN.1/B2642; RSF 11/S/112 (Biomed Central, 2015-06-12)
      Background Calving difficulty and perinatal mortality are prevalent in modern-day cattle production systems. It is well-established that there is a genetic component to both traits, yet little is known about their underlying genomic architecture, particularly in beef breeds. Therefore, we performed a genome-wide association study using high-density genotypes to elucidate the genomic architecture of these traits and to identify regions of the bovine genome associated with them. Results Genomic regions associated with calving difficulty (direct and maternal) and perinatal mortality were detected using two statistical approaches: (1) single-SNP (single nucleotide polymorphism) regression and (2) a Bayesian approach. Data included high-density genotypes on 770 Holstein-Friesian, 927 Charolais and 963 Limousin bulls. Several novel or previously identified genomic regions were detected but associations differed by breed. For example, two genomic associations, one each on chromosomes 18 and 2 explained 2.49 % and 3.13 % of the genetic variance in direct calving difficulty in the Holstein-Friesian and Charolais populations, respectively. Imputed Holstein-Friesian sequence data was used to refine the genomic regions responsible for significant associations. Several candidate genes on chromosome 18 were identified and four highly significant missense variants were detected within three of these genes (SIGLEC12, CTU1, and ZNF615). Nevertheless, only CTU1 contained a missense variant with a putative impact on direct calving difficulty based on SIFT (0.06) and Polyphen (0.95) scores. Using imputed sequence data, we refined a genomic region on chromosome 4 associated with maternal calving difficulty in the Holstein-Friesian population and found the strongest association with an intronic variant in the PCLO gene. A meta-analysis was performed across the three breeds for each calving performance trait to identify common variants associated with these traits in the three breeds. Our results suggest that a portion of the genetic variation in calving performance is common to all three breeds. Conclusion The genomic architecture of calving performance is complex and mainly influenced by many polymorphisms of small effect. We identified several associations of moderate effect size but the majority were breed-specific, indicating that breed-specific alleles exist for calving performance or that the linkage phase between genotyped allele and causal mutation varies between breeds.
    • Genomic regions associated with muscularity in beef cattle differ in five contrasting cattle breeds

      Doyle, Jennifer L; Berry, Donagh; Veerkamp, Roel F; Carthy, Tara R; Evans, Ross D; Walsh, Siobhán W; Purfield, Deirdre C; Science Foundation Ireland; SF 14/IA/2576; 16/RC/3835 (2020-01-30)
      Background Linear type traits, which reflect the muscular characteristics of an animal, could provide insight into how, in some cases, morphologically very different animals can yield the same carcass weight. Such variability may contribute to differences in the overall value of the carcass since primal cuts vary greatly in price; such variability may also hinder successful genome-based association studies. Therefore, the objective of our study was to identify genomic regions that are associated with five muscularity linear type traits and to determine if these significant regions are common across five different breeds. Analyses were carried out using linear mixed models on imputed whole-genome sequence data in each of the five breeds, separately. Then, the results of the within-breed analyses were used to conduct an across-breed meta-analysis per trait. Results We identified many quantitative trait loci (QTL) that are located across the whole genome and associated with each trait in each breed. The only commonality among the breeds and traits was a large-effect pleiotropic QTL on BTA2 that contained the MSTN gene, which was associated with all traits in the Charolais and Limousin breeds. Other plausible candidate genes were identified for muscularity traits including PDE1A, PPP1R1C and multiple collagen and HOXD genes. In addition, associated (gene ontology) GO terms and KEGG pathways tended to differ between breeds and between traits especially in the numerically smaller populations of Angus, Hereford, and Simmental breeds. Most of the SNPs that were associated with any of the traits were intergenic or intronic SNPs located within regulatory regions of the genome. Conclusions The commonality between the Charolais and Limousin breeds indicates that the genetic architecture of the muscularity traits may be similar in these breeds due to their similar origins. Conversely, there were vast differences in the QTL associated with muscularity in Angus, Hereford, and Simmental. Knowledge of these differences in genetic architecture between breeds is useful to develop accurate genomic prediction equations that can operate effectively across breeds. Overall, the associated QTL differed according to trait, which suggests that breeding for a morphologically different (e.g. longer and wider versus shorter and smaller) more efficient animal may become possible in the future.
    • Inter- and intra-reproducibility of genotypes from sheep technical replicates on Illumina and Affymetrix platforms

      Berry, Donagh; O'Brien, Aine; Wall, E.; McDermott, Kevin; Randles, Shane; Flynn, Paul; Park, Stephen D. E.; Grose, Jenny; Weld, Rebecca; McHugh, Noirin; et al. (Biomed Central, 2016-11-10)
      Background Accurate genomic analyses are predicated upon access to accurate genotype input data. The objective of this study was to quantify the reproducibility of genotype data that are generated from the same genotype platform and from different genotyping platforms. Methods Genotypes based on 51,121 single nucleotide polymorphisms (SNPs) for 84 animals that were each genotyped on Illumina and Affymetrix platforms and for another 25 animals that were each genotyped twice on the same Illumina platform were compared. Genotypes based on 11,323 SNPs for an additional 21 animals that were genotyped on two different Illumina platforms by two different service providers were also compared. Reproducibility of the results was measured as the correlation between allele counts and as genotype and allele concordance rates. Results A mean within-animal correlation of 0.9996 was found between allele counts in the 25 duplicate samples that were genotyped on the same Illumina platform and varied from 0.9963 to 1.0000 per animal. The mean (minimum, maximum) genotype and allele concordance rates per animal between the 25 duplicate samples were equal to 0.9996 (0.9968, 1.0000) and 0.9993 (0.9937, 1.0000), respectively. The concordance rate between the two different Illumina platforms was also near 1. A mean within-animal correlation of 0.9738 was found between genotypes that were generated on the Illumina and Affymetrix platforms and varied from 0.9505 to 0.9812 per animal. The mean (minimum, maximum) within-animal genotype and allele concordance rates between the Illumina and Affymetrix platforms were equal to 0.9711 (0.9418, 0.9798) and 0.9845 (0.9695, 0.9889), respectively. The genotype concordance rate across all genotypes increased from 0.9711 to 0.9949 when the SNPs used were restricted to those with three high-resolution genotype clusters which represented 75.2% of the called genotypes. Conclusions and implications Our results suggest that, regardless of the genotype platform or service provider, high genotype concordance rates are achieved especially if they are restricted to high-quality extracted DNA and SNPs that result in high-quality genotypes.
    • Investigation of bovine abortion and stillbirth/perinatal mortality - similar diagnostic challenges, different approaches

      Mee, John F (Biomed Central, 2020-09-04)
      Abstract This pracademic paper reviews current bovine foetopathy (abortion and stillbirth) case definitions, reporting and triage, and causes and time-of-death and proposes veterinary practitioner-focused investigative standard operating procedures (SOPs). Issues of under- and over-triage and intra-institutional SOP harmonisation are also discussed. It is proposed that an ‘observable abortion’ (120–260 days of gestation) is a more practitioner-friendly definition of abortion for reporting and benchmarking purposes and that the term ‘peristillbirth’ can replace stillbirth and perinatal mortality. Diagnosis of bovine foetopathy involves an investigative triad of the farmer, veterinary practitioner and the veterinary diagnostic laboratory. However, the poor sensitivity of abortion reporting undermines the value of currently adopted scanning/passive surveillance; parallel active surveillance/sentinel herd models should also be employed. The approach to abortion investigation differs from that of peristillbirth. The former should include collecting a herd and case history, examination and sampling of dam and cohorts and sampling of the foetus and placenta. A sample selection decision tree is provided to assist test selection. In peristillbirths, non-infectious and periparturient causes-of-death are more important hence the anamnesis must focus on peristillbirth risk factors and calving management. The foetopsy, while including the sampling menu appropriate to aborted foetuses, must also include a detailed internal and external examination of the carcass for lesions indicative of periparturient causes-of-death. In addition, for aborted foetuses the time-of-death is not important as the foetus is generally not viable; however, for the peristillbirth the time-of-death is critical as it provides useful information for the farmer to address modifiable risk factors and to alter their perinatal management. Reporting of the ultimate cause-of-death is more useful to prevent future abortions and peristillbirths though the proximate cause-of-death is often reported in the absence of a complete clinical anamnesis. Finally, the common reasons for diagnosis not reached (DNR) and the limitations of current investigative approaches are discussed.
    • Post-epidemic Schmallenberg virus circulation: parallel bovine serological and Culicoides virological surveillance studies in Ireland

      Collins, Áine B; Barrett, Damien; Doherty, Michael L.; Larska, M.; Mee, John F; Teagasc Walsh Fellowship Programme; National Centre for Research and Development (NCBiR), Poland; PBS2/A8/24/2013 (Biomed Central, 2016-10-18)
      Background Schmallenberg virus (SBV) emerged in northern-Europe in 2011 resulting in an epidemic of ruminant abortions and congenital malformations throughout the continent. In the years following the epidemic there have been reports of SBV overwintering and continued circulation in several European countries. When the population-level of immunity declines in exposed regions, re-introduction of SBV could result in further outbreaks of Schmallenberg disease. The aims of this study were to determine the SBV seroprevalence in previously exposed Irish dairy herds in 2014 and to investigate if SBV continued to circulate in these herds in the three years (2013–2015) following the Irish Schmallenberg epidemic. Whole-herd SBV serosurveillance was conducted in 26 herds before (spring) and following the 2014 vector-season (winter), and following the 2015 vector-season (winter). In spring 2014, 5,531 blood samples were collected from 4,070 cows and 1,461 heifers. In winter 2014, 2,483 blood samples were collected from 1,550 youngstock (8–10 months old) and a subsample (n = 933; 288 cows, 645 heifers) of the seronegative animals identified in the spring. Youngstock were resampled in winter 2015. Culicoides spp. were collected in 10 herds during the 2014 vector-season and analysed for SBV; a total of 138 pools (3,048 Culicoides) from 6 SBV vector species were tested for SBV RNA using real-time PCR. Results In spring 2014, animal-level seroprevalence was 62.5 % (cows = 84.7 %; heifers = 0.6 %). Within-herd seroprevalence ranged widely from 8.5 %–84.1 % in the 26 herds. In winter 2014, 22 animals (0.9 %; 10 cows, 5 heifers, 7 youngstock) originating in 17 herds (range 1–4 animals/herd) tested seropositive. In winter 2015 all youngstock, including the 7 seropositive animals in winter 2014, tested seronegative suggesting their initial positive result was due to persistence of maternal antibodies. All of the Culicoides pools examined tested negative for SBV-RNA. Conclusions SBV appears to have recirculated at a very low level in these herds during 2013 and 2014, while there was no evidence of SBV infection in naïve youngstock during 2015. A large population of naïve animals was identified and may be at risk of infection in future years should SBV re-emerge and recirculate as it has done in continental Europe.
    • Residual feed intake phenotype and gender affect the expression of key genes of the lipogenesis pathway in subcutaneous adipose tissue of beef cattle

      McKenna, Clare; Porter, Richard K; Keogh, Kate; Waters, Sinead M.; McGee, Mark; Kenny, David A.; Teagasc Walsh Fellowship Programme (Biomed Central, 2018-09-20)
      Background Feed accounts for up to 75% of costs in beef production systems, thus any improvement in feed efficiency (FE) will benefit the profitability of this enterprise. Residual feed intake (RFI) is a measure of FE that is independent of level of production. Adipose tissue (AT) is a major endocrine organ and the primary metabolic energy reservoir. It modulates a variety of processes related to FE such as lipid metabolism and glucose homeostasis and thus measures of inter-animal variation in adiposity are frequently included in the calculation of the RFI index. The aim of this study was to determine the effect of phenotypic RFI status and gender on the expression of key candidate genes related to processes involved in energy metabolism within AT. Dry matter intake (DMI) and average daily gain (ADG) were measured over a period of 70 d for 52 purebred Simmental heifers (n = 24) and bulls (n = 28) with an initial BW±SD of 372±39.6 kg and 387±50.6 kg, respectively. Residual feed intake was calculated and animals were ranked within gender by RFI into high (inefficient; n = 9 heifers and n = 8 bulls) and low (efficient; n = 9 heifers and n = 8 bulls) groups. Results Average daily gain ±SD and daily DMI ±SD for heifers and bulls were 1.2±0.4 kg and 9.1±0.5 kg, and 1.8±0.3 kg and 9.5±1 kg respectively. High RFI heifers and bulls consumed 10% and 15% more (P < 0.05) than their low RFI counterparts, respectively. Heifers had a higher expression of all genes measured than bulls (P < 0.05). A gender × RFI interaction was detected for HMGCS2(P < 0.05) in which high RFI bulls tended to have lower expression of HMGCS2 than low RFI bulls (P < 0.1), whereas high RFI heifers had higher expression than low RFI heifers (P < 0.05) and high RFI bulls (P < 0.05). SLC2A4 expression was consistently higher in subcutaneous AT of low RFI animals across gender. Conclusion The findings of this study indicate that low RFI cattle exhibit upregulation of the molecular mechanisms governing glucose metabolism in adipose tissue, in particular, glucose clearance. The decreased expression of SLC2A4 in the inefficient cattle may result in less efficient glucose metabolism in these animals. We conclude that SLC2A4 may be a potential biomarker for RFI in cattle.
    • Temporal patterns of inflammatory gene expression in local tissues after banding or burdizzo castration in cattle

      Pang, Wanyong; Earley, Bernadette; Sweeney, Torres; Gath, Vivian; Crowe, Mark A (Biomed Central, 2009-09-23)
      Background: Castration of male cattle has been shown to elicit inflammatory reactions and acute inflammation is initiated and sustained by the participation of cytokines. Methods: Sixty continental × beef bulls (Mean age 12 ± (s.e.) 0.2 months; Mean weight 341 ± (s.e.) 3.0 kg) were blocked by weight and randomly assigned to one of three treatments (n = 20 animals per treatment): 1) untreated control (Con); 2) banding castration at 0 min (Band); 3) Burdizzo castration at 0 min (Burd). Samples of the testis, epididymis and scrotal skin were collected surgically from 5 animals from each group at 12 h, 24 h, 7 d, and 14 d post-treatment, and analysed using real-time PCR. A repeated measurement analysis (Proc GLM) was performed using SAS. If there was no treatment and time interaction, main effects of treatment by time were tested by ANOVA. Results: Electrophoresis data showed that by 7 d post-castration RNA isolated from all the testicle samples of the Burd castrated animals, the epididymis and middle scrotum samples from Band castrates were degraded. Transitory effects were observed in the gene expression of IFN-γ, IL-6, IL-8 and TNF-α at 12 h and 24 h post treatment. Burd castrates had greater (P < 0.05) testicular IFN-γ mRNA levels compared with Band and Con animals, but lower (P < 0.05) testicular TNF-α mRNA levels compared with Con animals. Band castrates had greater (P < 0.05) testicular IL-6 mRNA levels than Burd castrates at 12 h post-castration. Burd castrates had greater (P < 0.05) testicular IL-8 mRNA levels than Band and Con animals at 24 h post-castration. In the epididymis, Burd castrates had greater (P < 0.05) IL-6 mRNA (both at 12 h and 24 h post treatment) and IL-8 mRNA (12 h post treatment) levels compared with Band and Con animals; Burd castrates had greater (P = 0.049) IL-10 mRNA levels than Band castrates at 12 h post-castration. Conclusion: Banding castration caused more inflammatory associated gene expression changes to the epididymis and scrotum than burdizzo. Burdizzo caused more severe acute inflammatory responses, in terms of pro-inflammatory cytokine gene expression, in the testis and epididymis than banding.