• The two peptide lantibiotic lacticin 3147 acts synergistically with polymyxin to inhibit Gram negative bacteria

      Draper, Lorraine A.; Cotter, Paul D.; Hill, Colin; Ross, R Paul; Science Foundation Ireland; 10/IN.1/B3027 (Biomed Central, 26/09/2013)
      Background: The emergence of bacterial drug resistance encourages the re-evaluation of the potential of existing antimicrobials. Lantibiotics are post-translationally modified, ribosomally synthesised antimicrobial peptides with a broad spectrum antimicrobial activity. Here, we focussed on expanding the potential of lacticin 3147, one of the most studied lantibiotics and one which possesses potent activity against a wide range of Gram positive species including many nosocomial pathogens. More specifically, our aim was to investigate if lacticin 3147 activity could be enhanced when combined with a range of different clinical antibiotics. Results: Initial screening revealed that polymyxin B and polymyxin E (colistin) exhibited synergistic activity with lacticin 3147. Checkerboard assays were performed against a number of strains, including both Gram positive and Gram negative species. The resultant fractional inhibitory concentration (FIC) index values established that, while partial synergy was detected against Gram positive targets, synergy was obvious against Gram negative species, including Cronobacter and E. coli. Conclusions: Combining lacticin 3147 with low levels of a polymyxin could provide a means of broadening target specificity of the lantibiotic, while also reducing polymyxin use due to the lower concentrations required as a result of synergy.
    • Update on the development of a novel dry cow therapy using a bismuth-based intramammary teat seal in combination with the bacteriocin lacticin 3147

      Crispie, Fiona; Flynn, James; Ross, R Paul; Hill, Colin; Meaney, William J (Biomed Central, 2004-11-01)
      Public concerns over the widespread prophylactic use of antibiotics have led to a search for alternatives to dry cow therapy for the prevention of intramammary infections. A popular alternative is to infuse a teat seal at drying-off. The teat seal is a viscous non-antibiotic formulation and when it is infused into the teat canal and the teat sinus it forms an internal seal that provides a physical barrier to invasion by mastitis-causing pathogens. Enhancement of teat seal formulations may be achieved using non-antibiotic additives such as bacteriocins, potent proteins produced by some bacteria that have the ability to kill other microorganisms. This paper traces the history of investigations at Moorepark Research Centre into the efficacy of teat seal plus lacticin 3147, a bacteriocin produced by Lactococcus lactis DPC3147, in the prevention of intramammary infections in dry cows. Indications from on-going investigations are that a dry cow formulation combining the two products has considerable potential as a non-antibiotic prophylactic product.