• Developing an independent, generic, phosphorus modelling component for use with grid-oriented, physically-based distributed catchment models

      Nasr, Ahmed Elssidig; Taskinen, Antti; Bruen, Michael; Environmental Protection Agency; Teagasc (02/07/2012)
      Grid-oriented, physically based catchment models calculate fields of various hydrological variables relevant to phosphorous detachment and transport. These include (i) for surface transport: overland flow depth and flow in the coordinate directions, sediment load, and sediment concentration and (ii) for subsurface transport: soil moisture and hydraulic head at various depths in the soil. These variables can be considered as decoupled from any chemical phosphorous model since phosphorous concentrations, either as dissolved or particulate, do not influence the model calculations of the hydrological fields. Thus the phosphorous concentration calculations can be carried out independently from and after the hydrological calculations. This makes it possible to produce a separate phosphorous modelling component which takes as input the hydrological fields produced by the catchment model and which calculates, at each step the phosphorous concentrations in the flows. This paper summarise the equations and structure of Grid Oriented Phosphorous Component (GOPC) developed for simulating the phosphorus concentrations and loads using the outputs of a fully distributed physical based hydrological model. Also the GOPC performance is illustrated by am example of an experimental catchment (created by the author) subjected to some ideal conditions.
    • Developing an independent, generic, phosphorus modelling component for use with grid-oriented, physically-based distributed catchment models

      Nasr, Ahmed Elssidig; Taskinen, Antti; Bruen, Michael (IWA Publishing, 02/07/2012)
      Grid-oriented, physically based catchment models calculate fields of various hydrological variables relevant to phosphorous detachment and transport. These include (i) for surface transport: overland flow depth and flow in the coordinate directions, sediment load, and sediment concentration and (ii) for subsurface transport: soil moisture and hydraulic head at various depths in the soil. These variables can be considered as decoupled from any chemical phosphorous model since phosphorous concentrations, either as dissolved or particulate, do not influence the model calculations of the hydrological fields. Thus the phosphorous concentration calculations can be carried out independently from and after the hydrological calculations. This makes it possible to produce a separate phosphorous modelling component which takes as input the hydrological fields produced by the catchment model and which calculates, at each step the phosphorous concentrations in the flows. This paper summarise the equations and structure of Grid Oriented Phosphorous Component (GOPC) developed for simulating the phosphorus concentrations and loads using the outputs of a fully distributed physical based hydrological model. Also the GOPC performance is illustrated by am example of an experimental catchment (created by the author) subjected to some ideal conditions.
    • The significance of the differences in soil phosphorus representation and transport procedures in the SWAT and HSPF models and a comparison of their performance in estimating phosphorus loss from an agriculture catchment in Ireland

      Nasr, Ahmed Elssidig; Bruen, Michael; Moles, Richard; Byrne, Paul; O'Regan, Bernadette (TWRI, 02/07/2012)
      Phosphorus transported from agriculture land has been identified as a major source of water pollution in a large number of Irish catchments. Models of this process are required in order to design and assess management measures. This paper reports on the comparison and assessment of two of the most promising physically-based distributed models, SWAT and HSPF, with particular emphasis on their suitability for Irish conditions. The representation of the overall soil phosphorus cycle is similar in both models but there is a significant difference in the level of detail in describing the chemical and biochemical processes in each model. Also there are differences in modeling the mechanisms by which phosphorus is removed from the soil column and either transported in dissolved form with the runoff water or in particulate form attached to eroded or detached sediment. These differences could have a significant influence on performance when using either of the models to simulate phosphorus loss from any catchment. Both models are applied to estimating the phosphorus concentration at the outlet of the Clarianna catchment in north Tiperrary (Ireland). This catchment is small (23km2) and the landuse is mainly pasture on grey brown podozilic soils. The results of model calibration are presented along with an assessment of the usefulness of the model outputs as a water quality management tool.