Assessment of the response of indigenous microflora and inoculated Bacillus licheniformis endospores in reconstituted skim milk to microwave and conventional heating systems by flow cytometry
Name:
1-s2.0-S0022030221006652-main.pdf
Size:
5.394Mb
Format:
PDF
Description:
main article
Author
Li, F.Santillan-Urquiza, E.
Cronin, U.
O'Meara, E.
McCarthy, W.
Hogan, S.A.
Wilkinson, M.G.
Tobin, J.T.
Date
2021-09
Metadata
Show full item recordStatistics
Display Item StatisticsCitation
F. Li, E. Santillan-Urquiza, U. Cronin, E. O'Meara, W. McCarthy, S.A. Hogan, M.G. Wilkinson, J.T. Tobin, Assessment of the response of indigenous microflora and inoculated Bacillus licheniformis endospores in reconstituted skim milk to microwave and conventional heating systems by flow cytometry, Journal of Dairy Science, Volume 104, Issue 9, 2021, Pages 9627-9644, ISSN 0022-0302, https://doi.org/10.3168/jds.2020-19875.Abstract
Heat treatment is one of the most widely used processing technologies in the dairy industry. Its primary purpose is to destroy microorganisms, both pathogenic and spoilage, to ensure the product is safe and has a reasonable shelf life. In this study microwave volumetric heating (MVH) was compared with a conventional tubular heat exchanger (THE), in terms of the effects of each at a range of temperatures (75°C, 85°C, 95°C, 105°C, 115°C, and 125°C) on indigenous microflora viability and the germination of inoculated Bacillus licheniformis endospores in reconstituted skim milk. To assess the heat treatment–related effects on microbial viability, classical agar-based tests were applied to obtain the counts of 4 various microbiological groups including total bacterial, thermophilic bacterial, mesophilic aerobic bacterial endospore, and thermophilic aerobic bacterial endospore counts, and additional novel insights into cell permeability and spore germination profiles post-heat treatment were obtained using real-time flow cytometry (FC) methods. No significant differences in the plate counts of the indigenous microorganisms tested, the plate counts of the inoculated B. licheniformis, or the relative percentage of germinating endospores were observed between MVH- and THE-treated samples, at equal temperatures in the range specified above, indicating that both methods inactivated inoculated endospores to a similar degree (up to 70% as measured by FC and 5 log reduction as measured by plate counting for some treatments of inoculated endospores). Furthermore, increased cell permeability of indigenous microflora was observed by FC after MVH compared with THE treatment of uninoculated skim milk, which was reflected in lower total bacterial count at a treatment temperature of 105°C. This work demonstrates the utility of FC as a rapid method for assessing cell viability and spore inactivation for postthermal processing in dairy products and overall provides evidence that MVH is at least as effective at eliminating native microflora and inoculated B. licheniformis endospores as THE.Funder
Department of Agriculture, Food and the Marine; Enterprise IrelandGrant Number
14/F/883; TC 2014 0016ae974a485f413a2113503eed53cd6c53
https://doi.org/10.3168/jds.2020-19875
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons