Data sharing in PredRet for accurate prediction of retention time: Application to plant food bioactive compounds
Name:
1-s2.0-S0308814621007639-main.pdf
Size:
2.241Mb
Format:
PDF
Description:
main article
Author
Low, Dorrain YanwenMicheau, Pierre
Koistinen, Ville Mikael
Hanhineva, Kati
Abrankó, László
Rodriguez-Mateos, Ana
da Silva, Andreia Bento
van Poucke, Christof
Almeida, Conceição
Andres-Lacueva, Cristina
Rai, Dilip K.
Capanoglu, Esra
Tomás Barberán, Francisco A.
Mattivi, Fulvio
Schmidt, Gesine
Gürdeniz, Gözde
Valentová, Kateřina
Bresciani, Letizia
Petrásková, Lucie
Dragsted, Lars Ove
Philo, Mark
Ulaszewska, Marynka
Mena, Pedro
González-Domínguez, Raúl
Garcia-Villalba, Rocío
Kamiloglu, Senem
de Pascual-Teresa, Sonia
Durand, Stéphanie
Wiczkowski, Wieslaw
Bronze, Maria Rosário
Stanstrup, Jan
Manach, Claudine
Keyword
Predicted retention timeMetabolomics
Plant food bioactive compounds
Metabolites
Data sharing
UHPLC
Date
2021-09
Metadata
Show full item recordStatistics
Display Item StatisticsCitation
Dorrain Yanwen Low, Pierre Micheau, Ville Mikael Koistinen, Kati Hanhineva, László Abrankó, Ana Rodriguez-Mateos, Andreia Bento da Silva, Christof van Poucke, Conceição Almeida, Cristina Andres-Lacueva, Dilip K. Rai, Esra Capanoglu, Francisco A. Tomás Barberán, Fulvio Mattivi, Gesine Schmidt, Gözde Gürdeniz, Kateřina Valentová, Letizia Bresciani, Lucie Petrásková, Lars Ove Dragsted, Mark Philo, Marynka Ulaszewska, Pedro Mena, Raúl González-Domínguez, Rocío Garcia-Villalba, Senem Kamiloglu, Sonia de Pascual-Teresa, Stéphanie Durand, Wieslaw Wiczkowski, Maria Rosário Bronze, Jan Stanstrup, Claudine Manach, Data sharing in PredRet for accurate prediction of retention time: Application to plant food bioactive compounds, Food Chemistry, Volume 357, 2021, 129757, ISSN 0308-8146, https://doi.org/10.1016/j.foodchem.2021.129757.Abstract
Prediction of retention times (RTs) is increasingly considered in untargeted metabolomics to complement MS/MS matching for annotation of unidentified peaks. We tested the performance of PredRet (http://predret.org/) to predict RTs for plant food bioactive metabolites in a data sharing initiative containing entry sets of 29–103 compounds (totalling 467 compounds, >30 families) across 24 chromatographic systems (CSs). Between 27 and 667 predictions were obtained with a median prediction error of 0.03–0.76 min and interval width of 0.33–8.78 min. An external validation test of eight CSs showed high prediction accuracy. RT prediction was dependent on shape and type of LC gradient, and number of commonly measured compounds. Our study highlights PredRet’s accuracy and ability to transpose RT data acquired from one CS to another CS. We recommend extensive RT data sharing in PredRet by the community interested in plant food bioactive metabolites to achieve a powerful community-driven open-access tool for metabolomics annotation.Funder
European Union; Nanyang Technological University, Singapore; MetaboHUB French infrastructure; Czech Science Foundation; Faculty of Pharmacy of Lisbon University; Academy of Finland; Lantmännen Foundation and EU H2020 FP7-Marie Curie-COFUND MoRE Programme; Biocenter Finland; Generalitat de Catalunya’s Agency AGAUR; “Juan de la Cierva” program from MINECO; Spanish National Research program; Fundación Seneca Región de Murcia; Norwegian Agriculture and Food Industry Research Funds; Carlsberg Foundation; Hungarian Academy of Sciences; Spanish MINECO; Teagasc Walsh FellowshipGrant Number
609398; 001991-00001; ANR-INBS-0010; 19-00043S; LISBOA-01-0145-FEDER-402-022125; grant numbers 277986 and 312550; 754412; 2017SGR1546; IJC2019-041867-I; grant numbers AGL-2015-73107-EXP/AEI, CSIC 201870E014; 19900/GERM/15; 262300; EFOP-3.6.3-VEKOP-16-2017-00005; AGL2016-76832-R; 2016038ae974a485f413a2113503eed53cd6c53
https://doi.org/10.1016/j.foodchem.2021.129757
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons