Satellite remote sensing of grasslands: from observation to management
Citation
Iftikhar Ali, Fiona Cawkwell, Edward Dwyer, Brian Barrett, Stuart Green, Satellite remote sensing of grasslands: from observation to management, Journal of Plant Ecology, Volume 9, Issue 6, 1 December 2016, Pages 649–671, https://doi.org/10.1093/jpe/rtw005Abstract
Aims Grasslands are the world’s most extensive terrestrial ecosystem, and are a major feed source for livestock. Meeting increasing demand for meat and other dairy products in a sustainable manner is a big challenge. At a field scale, Global Positioning System and ground-based sensor technologies provide promising tools for grassland and herd management with high precision. With the growth in availability of spaceborne remote sensing data, it is therefore important to revisit the relevant methods and applications that can exploit this imagery. In this article, we have reviewed the (i) current status of grassland monitoring/observation methods and applications based on satellite remote sensing data, (ii) the technological and methodological developments to retrieve different grassland biophysical parameters and management characteristics (i.e. degradation, grazing intensity) and (iii) identified the key remaining challenges and some new upcoming trends for future development. Important Findings The retrieval of grassland biophysical parameters have evolved in recent years from classical regression analysis to more complex, efficient and robust modeling approaches, driven by satellite data, and are likely to continue to be the most robust method for deriving grassland information, however these require more high quality calibration and validation data. We found that the hypertemporal satellite data are widely used for time series generation, and particularly to overcome cloud contamination issues, but the current low spatial resolution of these instruments precludes their use for field-scale application in many countries. This trend may change with the current rise in launch of satellite constellations, such as RapidEye, Sentinel-2 and even the microsatellites such as those operated by Skybox Imaging. Microwave imagery has not been widely used for grassland applications, and a better understanding of the backscatter behaviour from different phenological stages is needed for more reliable products in cloudy regions. The development of hyperspectral satellite instrumentation and analytical methods will help for more detailed discrimination of habitat types, and the development of tools for greater end-user operation.Funder
Teagasc Walsh Fellowshipae974a485f413a2113503eed53cd6c53
https://doi.org/10.1093/jpe/rtw005
Scopus Count
Collections
The following license files are associated with this item:
- Creative Commons
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International