The aim of the Teagasc Crops, Environment and Land Use Programme is to develop and transfer cost-effective crop production systems, along with evidence-based knowledge to support and underpin the development of an environmentally sustainable, competitive and profitable agri-food sector.

Collections in this community

Recent Submissions

  • The Double Spade Method: a ‘mini-profile’ visual soil evaluation technique

    Emmet-Booth, J.P.; Forristal, P.D.; Fenton, Owen; Bondi, G.; Holden, N.M (2021-11-23)
    Visual Soil Evaluation (VSE) methods are established for soil quality assessment and focus on the examination of soil structure and associated anthropogenic impacts. VSE techniques, of which numerous types exist, are successfully used internationally both in soil research and as sustainable soil management tools. Techniques are generally categorised into profile and spade methods. Profile methods examine entire soil profiles in soil-pits to depths of ~ 1.5 m, exploring interactions between inherent soil features and anthropic management at specific sample points. Spade methods examine the upper soil profile, often by extracting sample blocks of topsoil by spade and focus on anthropic impacts. The VESS method (Guimarães et al., 2011) is a widely used spade method and involves assessment of soil sample blocks to 25 cm depth. However, in arable soils, important structural features may occur just below this depth such as plough pans, which VESS may not capture. The SubVESS method (Ball et al., 2015) follows principles of VESS but allows assessment to ~ 1 m depth. However, the later involves soil-pit excavation by mechanical means, which may be destructive, costly, time consuming and limit replication. When used in on-farm situations by farmers or advisors, full soil-pit excavation may not be desirable. Here we describe a method previously outlined (Emmet-Booth et al. 2018) called the Double Spade Method (DS) designed to examine miniprofiles in soil pits to 40 cm depth, therefore capturing potential structural features below the VESS assessment depth, without requiring full soil-pit excavation.
  • Editorial: RAMIRAN 2017: Sustainable Utilisation of Manures and Residue Resources in Agriculture

    Misselbrook, Tom; Wagner-Riddle, Claudia; Richards, Karl; Lanigan, Gary; Burchill, William; Salazar, Francisco; RAMIRAN 2017 (Frontiers, 2019-09-24)
    The recycling of organic residues deriving from on-farm (e.g., livestock manure) or off-farm (e.g., sewage sludge, industrial by-products) is a central part of the circular economy toward developing more sustainable food production systems (e.g., EC, 2014). However, the safe, effective, and efficient use of organic “waste” streams as resources for nutrient provision and soil improvement in agricultural systems require several challenges to be addressed, summarized by Bernal (2017) as (i) to improve nutrient availability and soil cycling; (ii) to develop technologies for nutrient re-use; (iii) to reduce contaminants and improve food safety; (iv) to mitigate environmental emissions; and (v) to enhance soil health and function. Addressing these challenges needs multidisciplinary research within a whole systems context.
  • LIFE BEEF CARBON: a common framework for quantifying grass and corn based beef farms’ carbon footprints

    O’Brien, D.; Herron, J.; Andurand, J.; Caré, S.; Martinez, P.; Migliorati, L.; Moro, M.; Pirlo, G.; Dollé, J-B; European Union; et al. (Cambridge University Press (CUP), 2019-10-31)
    Europe’s roadmap to a low-carbon economy aims to cut greenhouse gas (GHG) emissions 80% below 1990 levels by 2050. Beef production is an important source of GHG emissions and is expected to increase as the world population grows. LIFE BEEF CARBON is a voluntary European initiative that aims to reduce GHG emissions per unit of beef (carbon footprint) by 15% over a 10-year period on 2172 farms in four large beef-producing countries. Changes in farms beef carbon footprint are normally estimated via simulation modelling, but the methods current models apply differ. Thus, our initial goal was to develop a common modelling framework to estimate beef farms carbon footprint. The framework was developed for a diverse set of Western Europe farms located in Ireland, Spain, Italy and France. Whole farm and life cycle assessment (LCA) models were selected to quantify emissions for the different production contexts and harmonized. Carbon Audit was chosen for Ireland, Bovid-CO2 for Spain and CAP’2ER for France and Italy. All models were tested using 20 case study farms, that is, 5 per country and quantified GHG emissions associated with on-farm live weight gain. The comparison showed the ranking of beef systems gross carbon footprint was consistent across the three models. Suckler to weaning or store systems generally had the highest carbon footprint followed by suckler to beef systems and fattening beef systems. When applied to the same farm, Carbon Audit’s footprint estimates were slightly lower than CAP’2ER, but marginally higher than Bovid-CO2. These differences occurred because the models were adapted to a specific region’s production circumstances, which meant their emission factors for key sources; that is, methane from enteric fermentation and GHG emissions from concentrates were less accurate when used outside their target region. Thus, for the common modelling framework, regionspecific LCA models were chosen to estimate beef carbon footprints instead of a single generic model. Additionally, the Carbon Audit and Bovid-CO2 models were updated to include carbon removal by soil and other environmental metrics included in CAP’2ER, for example, acidification. This allows all models to assess the effect carbon mitigation strategies have on other potential pollutants. Several options were identified to reduce beef farms carbon footprint, for example, improving genetic merit. These options were assessed for beef systems, and a mitigation plan was created by each nation. The cumulative mitigation effect of the LIFE BEEF CARBON plan was estimated to exceed the projects reduction target (−15%).
  • Parthenium hysterophorus Herbage Mulching: a Potential Source of Weeds Control in Soybean (Glycine max)

    Khalid, S; Shehzad, M; Zahoor, F; Mubeen, K; Ahmad, A; Ali, E (FapUNIFESP (SciELO), 2018-05-28)
    Weeds have indirect effects on crop plants. Crop development is affected by allelopathy from certain weed species. Allelochemicals from allelopathic weeds can disturb the root and shoot growth of emerging crop seedlings, as well as cause several other types of damage. A study was carried out to investigate the allelopathic potential of Parthenium hysterophorus for weed response in soybean. The experiment was laid out in Randomized Complete Block Design (RCBD) with split plot arrangements and replicated thrice. Sowing methods (broadcast and line sowing) were kept in the main plot and mulching treatments (surface mulching and soil incorporation) were kept in the sub-plots. Mulching of Parthenium hysterophorus was applied at the rate of 1.0 t ha-1, 2.5 t ha-1, 5 t ha-1 with control (no parthenium). Manual weed control was also used as treatments. The results revealed that significantly higher shoot length, shoot fresh weight, shoot dry weight, root length, root fresh weigh, root dry weight, number of nodules per plant, nodules fresh and dry weight, number of branches, number of pods per plant, thousand seed weight biological yield, economic yield, dry matter yield and harvest index were recorded with the soil incorporation of Parthenium herbage at the rate of 2.5 t ha-1. Maximum weed density and weed dry biomass were recorded in control plots while weed control efficiency was seen greater in plots where Parthenium herbage was applied to surface at the rate of 5 t ha-1. The results suggested that the use of Parthenium hysterophorus herbage mulching can reduce infestation of weeds by its allelopathic effects and increase the yield of soybean under sub-humid agro-climatic conditions.
  • The Potential Impacts of an EU-wide Agricultural Mitigation Target on the Irish Agriculture Sector

    Adenaeuer, Lucie; Breen, James; Witzke2, Heinz-Peter; Kesting, Monika; Hayden, Anne (Agricultural Economics Society, 2020-04-17)
    The recently published Irish Climate Action Plan has outlined the leading role which agriculture will have to take for Ireland in order to achieve national reduction of GHG emissions. The agricultural sector model CAPRI is used to investigate the impact of an EU-wide agricultural mitigation target on the Irish agriculture sector. Three scenarios developed under the JRC-project EcAMPA2, allowing the endogenous implementation of mitigation technologies, will show the possible impact range that such a policy target could have. It can be inferred that the Irish agriculture sector can achieve the set mitigation target by adapting livestock production systems, resulting in efficiency gains and implementing specific mitigation technologies. Without a mitigation target, changes are marginal, and voluntary adoption will rarely take place. Subsidising the implementation of mitigation technologies can buffer the impact that a mitigation target will have on the Irish agriculture sector, while achieving the set reduction.
  • Using a multi-dimensional approach for catchment scale herbicide pollution assessments

    Khan, Majid Ali; Costa, Fabiola Barros; Fenton, Owen; Jordan, Phil; Fennell, Chris; Mellander, Per-Erik; European Union; Department of Agriculture, Food and the Marine; 727450; 727450 (Elsevier, 2020-07-25)
    Worldwide herbicide use in agriculture, whilst safeguarding yields also presents water quality issues. Controlling factors in agricultural catchments include both static and dynamic parameters. The present study investigated the occurrence of herbicides in streams and groundwater in two meso-scale catchments with contrasting flow controls and agricultural landuse (grassland and arable land). Using a multi-dimensional approach, streams were monitored from November 2018 to November 2019 using Chemcatcher® passive sampling devices and groundwater was sampled in 95 private drinking water wells. The concentrations of herbicides were larger in the stream of the Grassland catchment (8.9–472.6 ng L−1) dominated by poorly drained soils than in the Arable catchment (0.9–169.1 ng L−1) dominated by well-drained soils. Incidental losses of herbicides during time of application and low flows in summer caused concentrations of MCPA, Fluroxypyr, Trichlorpyr, Clopyralid and Mecoprop to exceeded the European Union (EU) drinking water standard due to a lack of dilution. Herbicides were present in the stream throughout the year and the total mass load was higher in winter flows, suggesting a persistence of primary chemical residues in soil and sub-surface environments and restricted degradation. Losses of herbicides to the streams were source limited and influenced by hydrological conditions. Herbicides were detected in 38% of surveyed drinking water wells. While most areas had concentrations below the EU drinking water standard some areas with well-drained soils in the Grassland catchment, had concentrations exceeding recommendations. Individual wells had concentrations of Clopyralid (619 ng L−1) and Trichlorpyr (650 ng L−1). Despite the study areas not usually associated with herbicide pollution, and annual mass loads being comparatively low, many herbicides were present in both surface and groundwater, sometimes above the recommendations for drinking water. This whole catchment assessment provides a basis to develop collaborative measures to mitigate pollution of water by herbicides.
  • Plant traits of grass and legume species for flood resilience and N 2 O mitigation

    Oram, Natalie J.; Sun, Yan; Abalos, Diego; Groenigen, Jan Willem; Hartley, Sue; De Deyn, Gerlinde B.; Teagasc; European Union; Nederlandse Organisatie voor Wetenschappelijk Onderzoek; 754380; et al. (Wiley, 2021-07-11)
    1. Flooding threatens the functioning of managed grasslands by decreasing primary productivity and increasing nitrogen losses, notably as the potent greenhouse gas nitrous oxide (N2O). Sowing species with traits that promote flood resilience and mitigate flood-induced N2O emissions within these grasslands could safeguard their productivity while mitigating nitrogen losses. 2. We tested how plant traits and resource acquisition strategies could predict flood resilience and N2O emissions of 12 common grassland species (eight grasses and four legumes) grown in field soil in monocultures in a 14-week greenhouse experiment. 3. We found that grasses were more resistant to flooding while legumes recovered better. Resource-conservative grass species had higher resistance while resource-acquisitive grasses species recovered better. Resilient grass and legume species lowered cumulative N2O emissions. Grasses with lower inherent leaf and root δ13C (and legumes with lower root δ13C) lowered cumulative N2O emissions during and after the flood. 4. Our results highlight the differing responses of grasses with contrasting resource acquisition strategies, and of legumes to flooding. Combining grasses and legumes based on their traits and resource acquisition strategies could increase the flood resilience of managed grasslands, and their capability to mitigate flood-induced N2O emissions.
  • Preparation and Antimicrobial Properties of Alginate and Serum Albumin/Glutaraldehyde Hydrogels Impregnated with Silver(I) Ions

    Gallagher, Louise; Smith, Alanna; Kavanagh, Kevin; Devereux, Michael; Colleran, John; Breslin, Carmel; Richards, Karl G.; McCann, Malachy; Rooney, A. Denise; Department of Agriculture, Food and the Marine; et al. (MDPI AG, 2021-06-14)
    Calcium alginate (CaALG) hydrogel beads and two sets of composite beads, formed from a combination of calcium alginate/propylene glycol alginate/human serum albumin (CaALG/PGA/ HSA) and from calcium alginate with the quaternary ammonium salt, (3-(trimethoxysilyl)propyl)- octadecyldimethylammonium chloride (QA), (CaALG/QA), were prepared. Bovine serum albumin (BSA) was condensed with glutaraldehyde (GLA) to form a BSA/GLA hydrogel. The corresponding Ag+-containing gels of all of the above hydrogels were also formed, and slow leaching of the biocidal transition metal ion from the gels bestowed broad spectrum antimicrobial activity. In the absence of added Ag+, CaALG/QA was the only material to deliver marginal to moderate antibacterial and antifungal effects. The Ag+ impregnated hydrogel systems have the potential to maintain the antimicrobial properties of silver, minimising the risk of toxicity, and act as reservoirs to afford ongoing sterility.
  • Grain aphids (Sitobion avenae) with knockdown resistance (kdr) to insecticide exhibit fitness trade-offs, including increased vulnerability to the natural enemy Aphidius ervi

    Jackson, Gail E.; Malloch, Gaynor; McNamara, Louise; Little, Damon; Teagasc (Public Library of Science (PLoS), 2020-11-10)
    The development of insecticide-resistance mechanisms in aphids has been associated with inhibitory, pleiotropic fitness costs. Such fitness costs have not yet been examined in the UK’s most damaging cereal aphid, Sitobion avenae (grain aphid) (Hemiptera: Aphididae). This study aimed to evaluate the fitness trade-offs of the insecticide-resistant S. avenae clone versus an insecticide-susceptible S. avenae clone. Additionally, the parasitoid, Aphidius ervi (Hymenoptera: Braconidae), was introduced to examine its potential as a biological control agent. This study found that insecticide-resistant clones had significantly lower population growth and individual relative growth rate. Furthermore, insecticide-resistant clones suffered from a significantly greater rate of parasitisation (mummification) compared to their insecticide-susceptible counterparts. The successfulness of the parasitoid as a biological control agent could prevent the spread of the insecticide-resistant genotype. However, for this to be possible, insecticide spraying regimes need to be moderated, and habitat modification and parasitoid manipulation must be considered.
  • Biofortification of Chicken Eggs with Vitamin K—Nutritional and Quality Improvements

    O’Sullivan, Siobhan M.; E. Ball, M. Elizabeth; McDonald, Emma; Hull, George L. J.; Danaher, Martin; Cashman, Kevin D.; Department of Agriculture, Food and the Marine; Science Foundation Ireland; 15F670; 16/RI/3710 (Multidisciplinary Digital Publishing Institute, 2020-11-06)
    National nutrition surveys have shown that over half of all adults in Ireland, the United Kingdom (UK), and the United States of America (USA) have low vitamin K intakes. Thus, dietary strategies to improve vitamin K intakes are needed, and vitamin K biofortification of food may be one food-based approach. The primary aim of our study was to establish whether increasing the vitamin K3 content of hen feed can increase the vitamin K content of eggs, and the secondary aims were to examine the effects on hen performance parameters, as well as egg and eggshell quality parameters. A 12 week hen feeding trial was conducted in which Hyline chickens were randomized into four treatment groups (n = 32/group) and fed diets containing vitamin K3 (as menadione nicotinamide bisulfite) at 3 (control), 12.9, 23.7, and 45.7 mg/kg feed. Vitamin K1, menaquinone (MK)-4, MK-7, and MK-9 were measured in raw whole eggs via a liquid chromatography tandem mass spectrometry method. MK-4 was the most abundant form of vitamin K (91–98%) found in all eggs. Increasing the vitamin K3 content of hen feed over the control level significantly (p < 0.001) enhanced the MK-4 content of eggs (mean range: 46–51 µg/100 g, representing ~42–56% of US Adequate Intake values). Vitamin K biofortification also led to significant (p < 0.05) increases in the yellowness of egg yolk and in eggshell weight and thickness, but no other changes in egg quality or hen performance parameters. In conclusion, high-quality vitamin K-biofortified eggs can be produced with at least double the total vitamin K content compared to that in commercially available eggs.
  • Genome biology of the paleotetraploid perennial biomass crop Miscanthus

    Mitros, Therese; Barth, Susanne; Klaas, Manfred; U.S. Department of Energy; DE-SC0018420; DE-AC02-05CH11231.; 289461; DE-SC0006634; DE-SC0012379. (Nature, 2020-10-28)
    Miscanthus is a perennial wild grass that is of global importance for paper production, roofing, horticultural plantings, and an emerging highly productive temperate biomass crop. We report a chromosome-scale assembly of the paleotetraploid M. sinensis genome, providing a resource for Miscanthus that links its chromosomes to the related diploid Sorghum and complex polyploid sugarcanes. The asymmetric distribution of transposons across the two homoeologous subgenomes proves Miscanthus paleo-allotetraploidy and identifies several balanced reciprocal homoeologous exchanges. Analysis of M. sinensis and M. sacchariflorus populations demonstrates extensive interspecific admixture and hybridization, and documents the origin of the highly productive triploid bioenergy crop M. × giganteus. Transcriptional profiling of leaves, stem, and rhizomes over growing seasons provides insight into rhizome development and nutrient recycling, processes critical for sustainable biomass accumulation in a perennial temperate grass. The Miscanthus genome expands the power of comparative genomics to understand traits of importance to Andropogoneae grasses.
  • Tackling mushroom disease control in an environmentally conscious world

    Grogan, Helen (2021)
    The mushroom industry, like all of agriculture worldwide, is facing the impact of climate change as well as consumers’ desires to address it though modifying what they purchase so as to be as environmentally friendly as possible. At the 2021 ISMS Congress, Dr. Helen Grogan presented the state of the changing climate and opportunities for Integrated Pest Management in the mushroom industry.
  • Transcriptomic response of maize primary roots to low temperatures at seedling emergence

    Di Fenza, Mauro; Hogg, Bridget; Grant, Jim; Barth, Susanne; Irish Department of Agriculture, Food and the Marine; RSF 07 501 (PeerJ, 2017-01-05)
    Background. Maize (Zea mays) is a C4 tropical cereal and its adaptation to temperate climates can be problematic due to low soil temperatures at early stages of establishment. Methods. In the current study we have firstly investigated the physiological response of twelve maize varieties, from a chilling condition adapted gene pool, to sub-optimal growth temperature during seedling emergence. To identify transcriptomic markers of cold tolerance in already adapted maize genotypes, temperature conditions were set below the optimal growth range in both control and low temperature groups. The conditions were as follows; control (18 ◦C for 16 h and 12 ◦C for 8 h) and low temperature (12 ◦C for 16 h and 6 ◦C for 8 h). Four genotypes were identified from the condition adapted gene pool with significant contrasting chilling tolerance. Results. Picker and PR39B29 were the more cold-tolerant lines and Fergus and Codisco were the less cold-tolerant lines. These four varieties were subjected to microarray analysis to identify differentially expressed genes under chilling conditions. Exposure to low temperature during establishment in the maize varieties Picker, PR39B29, Fergus and Codisco, was reflected at the transcriptomic level in the varieties Picker and PR39B29. No significant changes in expression were observed in Fergus and Codisco following chilling stress. A total number of 64 genes were differentially expressed in the two chilling tolerant varieties. These two varieties exhibited contrasting transcriptomic profiles, in which only four genes overlapped. Discussion. We observed that maize varieties possessing an enhanced root growth ratio under low temperature were more tolerant, which could be an early and inexpensive measure for germplasm screening under controlled conditions. We have identified novel cold inducible genes in an already adapted maize breeding gene pool. This illustrates that further varietal selection for enhanced chilling tolerance is possible in an already preselected gene pool.
  • First Report of Shot Hole Disease on Cherry Laurel (Prunus laurocerasus) Caused by Micrococcus aloeverae in Ireland

    Smith, L.; Gibriel, H. A. Y.; Brennan, C.; del Pino de Elias, M.; Twamley, A.; Doohan, F.; Grogan, H.; Feechan, A.; Department of Agriculture, Food and the Marine; 15/S/759 (American Phytopathological Society, 2020-08-13)
    First Report of Shot Hole disease on Cherry Laurel (Prunus laurocerasus) Caused by Micrococcus aloeverae in Ireland
  • Exposure of Agaricus bisporus to Trichoderma aggressivum f. europaeum leads to growth inhibition and induction of an oxidative stress response

    Kosanovic, Dejana; Grogan, Helen; Kavanagh, Kevin; Science Foundation Ireland; Irish Research Council; 12/RI/2346.; GOIPD/2018/115 (Elsevier, 2020-07-23)
    Green mould disease of mushroom, Agaricus bisporus,is caused by Trichodermaspecies and can result in substantial crop losses.Label free proteomic analysis of changes in the abundance of A. bisporusproteins following exposure to T. aggressivumsupernatantin vitroindicated increased abundance of proteins associated with an oxidative stress response (zinc ion binding (+6.6 fold); peroxidase activity (5.3-fold); carboxylic ester hydrolase (+2.4 fold); dipeptidase (+3.2 fold); [2Fe-2S] cluster assembly (+3.3 fold)). Proteins that decreased in relative abundance were associated with growth: structural constituent of ribosome, translation (-12 fold), deadenylation-dependent decapping of nuclear-transcribed mRNA (-3.4 fold), and small GTPase mediated signal transduction (-2.6 fold). In vivoanalysis revealed that 10-4 T. aggressivuminoculum decreased the mushroom yield by 29% to 56% and 10-3 T. aggressivuminoculum decreased the mushroom yield by 68% to 100%. Proteins that increased in abundance in A. bisporusin vivofollowing exposure to T. aggressivumindicated an oxidative stress response and included proteins with pyruvate kinase activity (+2.6 fold) and hydrolase activity (+2.1 fold)). The results indicate that exposure of A. bisporusmycelium to T. aggressivum in vitroand in vivoresulted in an oxidative stress response and reduction in growth.
  • An investigation of anticoccidial veterinary drugs as emerging organic contaminants in groundwater

    Mooney, D.; Richards, Karl G.; Danaher, Martin; Grant, Jim; Gill, L.; Mellander, Per‐Erik; Coxon, C.E.; Science Foundation Ireland; Teagasc Walsh Fellowship Programme; 13/RC/2092,; et al. (Elsevier, 2020-07-26)
    Intensification of the food production system to meet increased global demand for food has led to veterinary pharmaceuticals becoming a critical component in animal husbandry. Anticoccidials are a group of veterinary products used to control coccidiosis in food-producing animals, with primary prophylactic use in poultry production. Excretion in manure and subsequent land-spreading provides a potential pathway to groundwater. Information on the fate and occurrence of these compounds in groundwater is scant, therefore these substances are potential emerging organic contaminants of concern. A study was carried out to investigate the occurrence of anticoccidial compounds in groundwater throughout the Republic of Ireland. Twenty-six anticoccidials (6 ionophores and 20 synthetic anticoccidials) were analysed at 109 sites (63 boreholes and 46 springs) during November and December 2018. Sites were categorised and selected based on the following source and pathway factors: (a) the presence/absence of poultry activity (b) predominant aquifer category and (c) predominant groundwater vulnerability, within the zone of contribution (ZOC) for each site. Seven anticoccidials, including four ionophores (lasalocid, monensin, narasin and salinomycin) and three synthetic anticoccidials (amprolium, diclazuril and nicarbazin), were detected at 24% of sites at concentrations ranging from 1 to 386 ng L−1. Monensin and amprolium were the two most frequently detected compounds, detected at 15% and 7% of sites, respectively. Multivariate statistical analysis has shown that source factors are the most significant drivers of the occurrence of anticoccidials, with no definitive relationships between occurrence and pathway factors. The study found that the detection of anticoccidial compounds is 6.5 times more likely when poultry activity is present within the ZOC of a sampling point, compared to the absence of poultry activity. This work presents the first detections of these contaminants in Irish groundwater and it contributes to broadening our understanding of the environmental occurrence and fate of anticoccidial veterinary products.
  • Is urban growing of fruit and vegetables associated with better diet quality and what mediates this relationship? Evidence from a cross-sectional survey

    Mead, Bethan R.; Christiansen, Paul; Davies, Jessica A.C.; Falagán, Natalia; Kourmpetli, Sofia; Liu, Lingxuan; Walsh, Lael; Hardman, Charlotte A.; Global Food Security; Biotechnology and Biological Services Research Council; et al. (Elsevier, 2021-03-18)
    Urban agriculture (UA), the growing of fruits and vegetables in urban and peri-urban areas, may improve food security and access, public health and dietary quality on both a broad and personal scale. However, there is little research on the relationship between UA and diet, and potential mediating factors are also unclear. This study aimed to investigate if proximity to and engagement with UA is associated with better diet quality, and what accounts for this relationship. UK-based adults (N = 583, 69% Female) completed measures of proximity to and engagement with UA, perceived access to fruits and vegetables, health and ethical food choice motivations, connection with nature, psychological distress and dietary quality in an online survey. Participants were recruited from UA-related groups and the general public. Proposed relationships were analysed using a structural equation model. Greater proximity to and engagement with UA was associated with greater perceived access to fruits and vegetables, more health-related food choice motivations, more ethical-related food choice, feeling more connected with nature, and, surprisingly greater psychological distress. Furthermore, proximity to and engagement with UA was indirectly associated with better diet quality via health-, and ethical-related, food choice motivations. While the direct pathway between proximity to and engagement with UA and diet quality was not significant, UA is associated with better diet quality, partly via healthier and ethical food choice motivations. Upscaling UA may have benefits for dietary quality via these factors, and more research is needed to test causal relationships and understand these complex interactions.
  • A review of the pesticide MCPA in the land‐water environment and emerging research needs

    Morton, Phoebe A.; Fennell, Chris; Cassidy, Rachel; Doody, Donnacha; Fenton, Owen; Mellander, Per‐Erik; Jordan, Phil; European Union; 727450; IVA5018 (Wiley, 2019-12-03)
    Due to its high solubility and poor adsorption to the soil matrix, the postemergence herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA) is susceptible to transport into surface and groundwater bodies, where it can result in compromised water quality and breaches of legislative standards. However, there is still poor understanding of catchment scale dynamics and transport, particularly across heterogeneous hydrogeological settings. While it is known that MCPA degrades under aerobic conditions, negligible breakdown can occur in anaerobic environments, potentially creating a legacy in saturated soils. Fast runoff pathways post application are likely transport routes, but the relative contribution from the mobilization of legacy MCPA from anaerobic zones has yet to be quantified, making the delineation of MCPA sources encountered during monitoring programs challenging. While ecotoxicological effects have been examined, little is known about the interaction of MCPA (and its degradation products) with other pesticides, with nutrients or with colloids, and how this combines with environmental conditions to contribute to multiple stressor effects. We examine the state of MCPA knowledge, using case study examples from Ireland, and consider the implications of its widespread detection in waterbodies and drinking water supplies. Research themes required to ensure the sustainable and safe use of MCPA in an evolving agricultural, social and political landscape are identified here. These include the need to identify mitigation measures and/or alternative treatments, to gain insights into the conditions governing mobilization and attenuation, to map pathways of migration and to identify direct, synergistic and antagonistic ecotoxicological effects.
  • Ranking connectivity risk for phosphorus loss along agricultural drainage ditches

    Moloney, Thomas; Fenton, Owen; Daly, Karen; Irish Environmental Protection Agency; Department of Agriculture, Food and the Marine; 2017-W-LS-15 (Elsevier BV, 2020-02)
    Agricultural drainage systems comprising both in-field pipe drains and surface ditches are typically installed to remove excess water from agricultural land. These drainage networks can provide connectivity between phosphorus (P) sources and surface waters thereby increasing the risk of P loss to rivers and streams. The objective of this study was to derive a farm-scale drainage ranking that categorises drainage ditches in terms of P loss risk based on connectivity and physic-chemical characteristics. Ten pilot farms were selected to characterise drainage networks through ground survey and, sediment and water sampling. Five drainage ditch categories were derived based on landscape setting and connectivity. Each category recorded soluble and reactive P concentrations above environmental water quality standards. To assess the risk of surface ditches as a connectivity vector between agricultural P and surface waters ditches were ranked in order of P loss risk by integrating landscape position and sediment P chemistry. Elevated sediment P with high equilibrium P concentration (EPCo) were associated with ditches connected to farm yards, and in sediment sampled at ditch outlets, suggesting P deposition over time indicative of a legacy P source. The greatest risk of P loss was attributed to ditches connecting farm yards to streams, and ditches that connected the drainage network to surface waters, or Outlets. These results rank connectivity risk for P loss along agricultural drainage ditches for farm level risk assessment to target P loss mitigation measures to the appropriate locations.
  • Using a multi-dimensional approach for catchment scale herbicide pollution assessments

    Khan, Majid Ali; Costa, Fabiola Barros; Fenton, Owen; Jordan, Phil; Fennell, Chris; Mellander, Per-Erik; European Union; 727450 (Elsevier BV, 2020-12)
    Worldwide herbicide use in agriculture, whilst safeguarding yields also presents water quality issues. Controlling factors in agricultural catchments include both static and dynamic parameters. The present study investigated the occurrence of herbicides in streams and groundwater in two meso-scale catchments with contrasting flow controls and agricultural landuse (grassland and arable land). Using a multi-dimensional approach, streams were monitored from November 2018 to November 2019 using Chemcatcher® passive sampling devices and groundwater was sampled in 95 private drinking water wells. The concentrations of herbicides were larger in the stream of the Grassland catchment (8.9–472.6 ng L−1) dominated by poorly drained soils than in the Arable catchment (0.9–169.1 ng L−1) dominated by well-drained soils. Incidental losses of herbicides during time of application and low flows in summer caused concentrations of MCPA, Fluroxypyr, Trichlorpyr, Clopyralid and Mecoprop to exceeded the European Union (EU) drinking water standard due to a lack of dilution. Herbicides were present in the stream throughout the year and the total mass load was higher in winter flows, suggesting a persistence of primary chemical residues in soil and sub-surface environments and restricted degradation. Losses of herbicides to the streams were source limited and influenced by hydrological conditions. Herbicides were detected in 38% of surveyed drinking water wells. While most areas had concentrations below the EU drinking water standard some areas with well-drained soils in the Grassland catchment, had concentrations exceeding recommendations. Individual wells had concentrations of Clopyralid (619 ng L−1) and Trichlorpyr (650 ng L−1). Despite the study areas not usually associated with herbicide pollution, and annual mass loads being comparatively low, many herbicides were present in both surface and groundwater, sometimes above the recommendations for drinking water. This whole catchment assessment provides a basis to develop collaborative measures to mitigate pollution of water by herbicides.

View more