The aim of the Teagasc Crops, Environment and Land Use Programme is to develop and transfer cost-effective crop production systems, along with evidence-based knowledge to support and underpin the development of an environmentally sustainable, competitive and profitable agri-food sector.

Collections in this community

Recent Submissions

  • Using a multi-dimensional approach for catchment scale herbicide pollution assessments.

    Khan, Majid Ali; Costa, Fabiola Barros; Fenton, Owen; Jordan, Phil; Fennell, Chris; Mellander, Per-Erik; European Union; 727450 (Elsevier, 2020-07-25)
    Worldwide herbicide use in agriculture, whilst safeguarding yields also presents water quality issues. Controlling factors in agricultural catchments include both static and dynamic parameters. The present study investigated the occurrence of herbicides in streams and groundwater in two meso-scale catchments with contrasting flow controls and agricultural landuse (grassland and arable land). Using a multi-dimensional approach, streams were monitored from November 2018 to November 2019 using Chemcatcher® passive sampling devices and groundwater was sampled in 95 private drinking water wells. The concentrations of herbicides were larger in the stream of the Grassland catchment (8.9-472.6 ng L-1) dominated by poorly drained soils than in the Arable catchment (0.9-169.1 ng L-1) dominated by well-drained soils. Incidental losses of herbicides during time of application and low flows in summer caused concentrations of MCPA, Fluroxypyr, Trichlorpyr, Clopyralid and Mecoprop to exceeded the European Union (EU) drinking water standard due to a lack of dilution. Herbicides were present in the stream throughout the year and the total mass load was higher in winter flows, suggesting a persistence of primary chemical residues in soil and sub-surface environments and restricted degradation. Losses of herbicides to the streams were source limited and influenced by hydrological conditions. Herbicides were detected in 38% of surveyed drinking water wells. While most areas had concentrations below the EU drinking water standard some areas with well-drained soils in the Grassland catchment, had concentrations exceeding recommendations. Individual wells had concentrations of Clopyralid (619 ng L-1) and Trichlorpyr (650 ng L-1). Despite the study areas not usually associated with herbicide pollution, and annual mass loads being comparatively low, many herbicides were present in both surface and groundwater, sometimes above the recommendations for drinking water. This whole catchment assessment provides a basis to develop collaborative measures to mitigate pollution of water by herbicides.
  • Exposure of Agaricus bisporus to Trichoderma aggressivum f. europaeum leads to growth inhibition and induction of an oxidative stress response

    Kosanovic, Dejana; Grogan, Helen; Kavanagh, Kevin; Irish Research Council; GOIPD/2018/115 (Elsevier BV, 2020-09)
    Green mould disease of mushroom, Agaricus bisporus,is caused by Trichodermaspecies and can result in substantial crop losses.Label free proteomic analysis of changes in the abundance of A. bisporusproteins following exposure to T. aggressivumsupernatantin vitroindicated increased abundance of proteins associated with an oxidative stress response (zinc ion binding (+6.6 fold); peroxidase activity (5.3-fold); carboxylic ester hydrolase (+2.4 fold); dipeptidase (+3.2 fold); [2Fe-2S] cluster assembly (+3.3 fold)). Proteins that decreased in relative abundance were associated with growth: structural constituent of ribosome, translation (-12 fold), deadenylation-dependent decapping of nuclear-transcribed mRNA (-3.4 fold), and small GTPase mediated signal transduction (-2.6 fold). In vivoanalysis revealed that 10-4 T. aggressivuminoculum decreased the mushroom yield by 29% to 56% and 10-3 T. aggressivuminoculum decreased the mushroom yield by 68% to 100%. Proteins that increased in abundance in A. bisporusin vivofollowing exposure to T. aggressivumindicated an oxidative stress response and included proteins with pyruvate kinase activity (+2.6 fold) and hydrolase activity (+2.1 fold)). The results indicate that exposure of A. bisporusmycelium to T. aggressivum in vitroand in vivoresulted in an oxidative stress response and reduction in growth.
  • An investigation of anticoccidial veterinary drugs as emerging organic contaminants in groundwater

    Mooney, D.; Richards, K.G.; Danaher, M.; Grant, J.; Gill, L.; Mellander, P.-E.; Coxon, C.E.; Science Foundation Ireland; European Regional Development Fund; Teagasc Walsh Scholarship Programme; et al. (Elsevier BV, 2020-12)
    Intensification of the food production system to meet increased global demand for food has led to veterinary pharmaceuticals becoming a critical component in animal husbandry. Anticoccidials are a group of veterinary products used to control coccidiosis in food-producing animals, with primary prophylactic use in poultry production. Excretion in manure and subsequent land-spreading provides a potential pathway to groundwater. Information on the fate and occurrence of these compounds in groundwater is scant, therefore these substances are potential emerging organic contaminants of concern. A study was carried out to investigate the occurrence of anticoccidial compounds in groundwater throughout the Republic of Ireland. Twenty-six anticoccidials (6 ionophores and 20 synthetic anticoccidials) were analysed at 109 sites (63 boreholes and 46 springs) during November and December 2018. Sites were categorised and selected based on the following source and pathway factors: (a) the presence/absence of poultry activity (b) predominant aquifer category and (c) predominant groundwater vulnerability, within the zone of contribution (ZOC) for each site. Seven anticoccidials, including four ionophores (lasalocid, monensin, narasin and salinomycin) and three synthetic anticoccidials (amprolium, diclazuril and nicarbazin), were detected at 24% of sites at concentrations ranging from 1 to 386 ng L−1. Monensin and amprolium were the two most frequently detected compounds, detected at 15% and 7% of sites, respectively. Multivariate statistical analysis has shown that source factors are the most significant drivers of the occurrence of anticoccidials, with no definitive relationships between occurrence and pathway factors. The study found that the detection of anticoccidial compounds is 6.5 times more likely when poultry activity is present within the ZOC of a sampling point, compared to the absence of poultry activity. This work presents the first detections of these contaminants in Irish groundwater and it contributes to broadening our understanding of the environmental occurrence and fate of anticoccidial veterinary products.
  • Increasing Tree Cover on Irish Dairy and Drystock Farms

    Irwin, Rachel; Short, Ian; Ní Dhubháin, Áine (Dawn Media, 2022)
    What are the main barriers and perceptions that impede agroforestry uptake?
  • The distribution, type, popularity, size and availability of river-run gravel and crushed stone for use in land drainage systems and their suitability for mineral soils in Ireland

    Byrne, I.; Healy, M. G.; Fenton, Owen; Tuohy, P. (Teagasc, 2022-06-24)
    The performance of land drainage systems installed in mineral soils in Ireland is highly variable, and is dependent on, amongst other factors, the quality and suitability of the aggregate used. In Ireland, aggregate for land drainage systems is usually river-run gravel and crushed stone. This study classified the distribution, type, popularity, size and availability of aggregates for land drainage systems throughout Ireland and quantified their suitability for use in mineral soils. Eighty-six quarries were surveyed. Limestone and river-run gravel (80% of lithologies) are widespread throughout the country. The quarry aggregate sizes (“Q sizes”), reported by the quarries as either a single size, that is, “50 mm”, or a graded size, that is, 20–40 mm, were variable, changed across lithology and region and were, in most cases, larger than what is currently recommended. A particle size distribution analysis of 74 samples from 62 quarries showed that individual Q sizes increased in variability with increasing aggregate size. In some regions, the aggregate sold does not meet current national regulations, which specify an aggregate size ranging from 10 to 40 mm. The suitability of these aggregates for drainage in five soils of different textures was compared using three established design criteria. It was found that the aggregate in use is too large for heavy soil textures and is therefore unsuitable as drainage envelope material. Guidance for contractors, farmers and quarry owners will be required, and investment may be needed by quarries to produce aggregate that satisfies design criteria. An aggregate size, based on one or a combination of established aggregate design criteria, where an analysis of the soil texture is conducted and an appropriate aggregate is chosen based off its 15% passing size, is required.
  • Datafile: Grassland legacy effects on yield of a follow-on crop in rotation strongly influenced by legume proportion and moderately by drought

    Grange, Guylain; Brophy, Caroline; Finn, John (2022)
    Dataset contains the dry matter and nitrogen yield responses of a Lolium multiflorum crop (summed across harvests). The L. multiflorum crop was sown on plots comprising grassland communities of one to six species (and one to three functional groups) that were growing for the previous two years. An experimental summer drought was implemented on half of each plot during the grassland phase but not the crop phase. Data were collected in Wexford, Republic of Ireland (52.299584, -6.506458) in 2020.
  • Data file: A landscape classification map of Ireland and its potential use in national land use monitoring.

    Carlier, J.; Doyle, M.; Finn, John; Ó hUallacháin, D.; Moran, J.; Department of Agriculture, Food and the Marine; 2019R425 (Elsevier, 2021)
    This data file provides the map (png file) and GIS data associated with a publication in the Journal of Environmental Management titled 'A landscape classification map of Ireland and its potential use in national land use monitoring.'
  • An outline of achievements in selected areas of forest research in Ireland 1960–2021

    Farrelly, Niall; Nemesio Gorriz, Miguel; Short, Ian; Ní Dhubháin, Á.; Tobin, B.; O’Hanlon, R.; Earl, R.; McCullagh, A.; O’Donoghue, C.; Ryan, M. (Teagasc, 2022-03-01)
    In this paper, we provide an overview of achievements in forest research in Ireland carried out by various agencies over the past 60 yr. Many of the outcomes of the research have ensured that policy and practice are well-founded, and many of the research results form the basis of current forest standards and practice. Forest research has, and will continue to have, a significant role in national policy development and international reporting commitments. The achievement of future goals and targets is increasingly dependent on the maintenance of the goods and services that forests provide; these can be enhanced through the establishment of new forests and by appropriate management of the resource (e.g. The EU Green Deal and EU Forest Strategy). We outline the current state of knowledge which can be used to inform afforestation goals and the importance of tree improvement, forest management and forest protection to improve competitiveness and sustainability. Research into forestry and carbon provides a focus on the opportunities and challenges of climate change to Irish forestry. Future efforts will involve longer-term monitoring of environmental change commensurate with the forest rotation to reduce the uncertainties associated with climate change. Research into forestry economics, attitudinal surveys and behavioural studies may help inform the achievement of future policy goals. Reducing the impacts of biotic attack through efficient surveying, disease monitoring and assessing future risk is likely to be the focus of future research effort.
  • A landscape classification map of Ireland and its potential use in national land use monitoring

    Carlier, J.; Doyle, M.; Finn, John; O hUallachain, Daire; Moran, J.; Department of Agriculture, Food and the Marine; 2019R425 (Elsevier BV, 2021-07)
    This study presents a novel landscape classification map of the Republic of Ireland and is the first to identify broad landscape classes by incorporating physiographic and land cover data. The landscape classification responds to commitments to identify and classify the Irish landscape as a signatory to the European Landscape Convention. The methodology applied a series of clustering iterations to determine an objective multivariate classification of physiographic landscape units and land cover datasets. The classification results determined nine statistically significant landscape classes and the development of a landscape classification map at a national scale. A statistical breakdown of land cover area and diversity of each class was interpreted, and a comparison was extended using independent descriptive variables including farmland use intensity, elevation, and dominant soil type. Each class depicts unique spatial and composition characteristics, from coastal, lowland and elevated, to distinct and dominating land cover types, further explained by the descriptive variables. The significance of individual classes and success of the classification is discussed with particular reference to the wider applicability of the map. The transferability of the methodology to other existing physiographic maps and environmental datasets to generate new landscape classifications is also considered. This novel work facilitates the development of a strategic framework to efficiently monitor, compare and analyse ecological and other land use data that is spatially representative of the distribution and extent of land cover in the Irish countryside.
  • Benchmarking a decade of holistic agro-environmental studies within the Agricultural Catchments Programme

    Mellander, Per-Erik; Lynch, M.B.; Galloway, J.; Žurovec, O.; McCormack, Michele; O’Neill, M.; Hawtree, D.; Burgess, E.; Department of Agriculture, Food and the Marine (Teagasc, 2022-02-26)
    Meeting sustainable food production challenges requires efficient ways to manage nutrients and mitigate the losses of nitrogen (N) and phosphorus (P) to water. Future nutrient management therefore requires a clearer understanding of the relative influence of soils, geology, farm practice, landscape and weather on the propensity for nutrients to be lost to water. Within the Agricultural Catchments Programme (ACP), environmental, agronomic and socioeconomic data have been gathered since 2009, using the same experimental methodology in five meso-scale river catchments, and one karst spring zone, covering a range of soils, landscapes and farming systems. The ACP has contributed to a better understanding of nutrient mobilisation and transfer pathways and highlighted the influence of the physical and chemical environment as well as agricultural and meteorological drivers on diffuse nutrient loss to ground and surface waters. The environmental quality standards were breached for N and/or P in some of the catchments, but for different reasons and not always clearly linked to the source pressures within the catchment. There are clearly no one-size-fits-all solutions for mitigation of nutrient losses to water. A better understanding of the underlying processes is required to identify critical source areas, to select mitigation strategies, when to implement them and to build realistic expectations of their impact. Sustainability in an agricultural setting is not confined to environmental issues, but also includes social, economic and innovative aspects. To maximise farmers’ uptake of environmental measures, the actions should encompass all these aspects of sustainability. Integrated knowledge transfer is key.
  • Potatoes in Ireland: Sixty years of potato research and development, market evolution and perspectives on future challenges

    Griffin, Denis; Bourke, L.; Mullins, Ewen; Hennessy, M.; Phelan, S.; Kildea, Steven; Milbourne, Dan (Teagasc, 2022-02-25)
    Potato is often considered synonymous with Ireland, due to the great Irish famine in 1845, and remains the most important primary food crop in Ireland. Over the last 60 yr, the area of potatoes has reduced from 86,000 ha to 9,000 ha. This trend has occurred in most developed countries but in Ireland it is due to decreasing consumption, increasing yield, decline in seed production and potatoes no longer being use for animal feed. Significant specialisation occurred in the industry during the 1990s, with improvements in agronomy, on farm investment in storage and field equipment, consolidation of packing facilities, and a significant shift in cultivar choice, with Rooster becoming the dominant cultivar. These developments led to an increase in yield from 20 t/ha in the mid-1980s to over 40 t/ha today. Potato research in Ireland has focused on breeding, pathology and agronomy, while there have been significant changes in how knowledge is communicated to growers and the industry in this period. The industry faces many challenges in the future, largely framed by climate change, the need to reduce fertiliser and plant protection products as part of the EU Farm to Fork Strategy and industry size constraints. New superior potato varieties and novel breeding techniques will have potential to help address many challenges in combination with integrated pest management principles. Multi-actor approaches will be necessary to address all challenges but particularly to aid the industry grow and exploit emerging opportunities.
  • Quantification of In Planta Zymoseptoria tritici Progression Through Different Infection Phases and Related Association with Components of Aggressiveness

    Rahman, Atikur; Doohan, Fiona; Mullins, Ewen; European Union; 674964 (Scientific Societies, 2020-06)
    In planta growth of Zymoseptoria tritici, causal agent of Septoria tritici blotch of wheat, during the infection process has remained an understudied topic due to the long symptomless latent period before the emergence of fruiting bodies. In this study, we attempted to understand the relationship between in planta growth of Z. tritici relative to the primary components of aggressiveness, i.e., latent period and pycnidia coverage in regard to contrasting host resistance. We tested isolates collected from Ireland against the susceptible cultivar Gallant and cultivar Stigg, which has strong partial resistance. A clear isolate−host interaction effect (F = 3.018; P = 0.005, and F = 6.008; P < 0.001) for latent period and pycnidia coverage, respectively, was identified. Furthermore, during the early infection phase of latency from 5 to 11 days postinoculation (dpi), in planta growth rate of fungal biomass was significantly (F = 30.06; P < 0.001) more affected by host resistance than isolate specificity (F = 1.27; P = 0.27), indicating the importance of host resistance in the early infection phase. In planta Z. tritici growth rates in cultivar Gallant spiked between 11 and 16 dpi followed by a continuous fall onward, whereas in cultivar Stigg it was slowly progressive in nature. From correlation and regression analysis, we found that the in planta growth rate preceding the average latent period of cultivar Gallant has more influence on latency duration and pycnidia production. Likewise, correlation between component of aggressiveness and in planta growth rate of pathogen supports our understanding of aggressiveness to be driven by the pathogen’s multiplication capacity within host tissue.
  • A comparative study on seed physiology and germination requirements for 15 species of Eucalyptus

    Afroze, Farhana; Douglas, Gerry C.; Grogan, Helen; Department of Agriculture, Food and the Marine; 15/S/759 (Springer Science and Business Media LLC, 2021-09-23)
    Seed physiology of 15 Eucalyptus species of interest for cut foliage plantations was unknown and therefore evaluated. The viability and vigour of seeds and germination potential of 15 Eucalyptus species was determined by using a tetrazolium (TZ) staining test, and the results were compared to a germination test. In a separate experiment, seeds of each lot were subjected to either 0 or 4-week cold stratification at 4 ± 1 °C to investigate their potential stratification requirement. After stratification, seeds were then allowed to germinate at 22 ± 1 °C with 16 h lighting per day for 36 days. Seed viability and vigour were checked by evaluating % root, cotyledon and first true leaves emergence, and the speed of emergence, in the germination test. The germination percentages varied with the species. Seed stratification with the interaction of seed species lots significantly affected both viability and vigour. The seed viability of the different species ranged from 9 to 100% and 2 to 100%, for the TZ test and germination test, respectively, with a high correlation (R2 = 0.89) between the two. Physiology tests revealed that cold stratification of seed was not required for the 15 species to maximise their germination potential and growth in Irish and British climate.
  • Prunus laurocerasus - A crop walkers guide to pests and diseases

    Horticulture Development Department; Grogan, Helen; McGuinness, Brian; Whelton, Andy; Baars, Jan-Robert; Department of Agriculture, Food and the Marine; 15S759 (Teagasc, 2021)
    The large glossy leaves of Prunus laurocerasus are affected by a variety of problems including pests, diseases and nutrition. The most common issue is commonly referred to as ‘shothole’ due to the nature of the disease symptoms and its’ resemblance to shotgun damage. The causal agents of ‘shothole disease’ vary considerably and this will affect how you approach your disease management strategy.
  • The occurrence of herbicide-resistant Avena fatua (wild oats) populations to ACCase-inhibiting herbicides in Ireland

    Byrne, R.; Vijaya Bhaskar, A.V.; Spink, J.; Freckleton, R.; Neve, P.; Barth, Susanne (Teagasc, 2021-06-03)
    Following growers’ reports of herbicide control problems, populations of 30 wild oats, Avena fatua, were collected from the south-east main arable counties of Ireland in 2016 and investigated for the occurrence and potential for herbicide resistance to acetyl-CoA carboxylase (ACCase) inhibitors pinoxaden, propaquizafop and cycloxydim, as well as acetolactate synthase (ALS) inhibitor mesosulfuron + iodosulfuron. Plant survival ≥20% was considered as the discriminating threshold between resistant and susceptible populations, when plants were treated with full recommended field rates of ACCase/ALS inhibitors. Glasshouse sensitivity screens revealed 2 out of 30 populations were cross-resistant to all three ACCase inhibitors. While three populations were cross-resistant to both pinoxaden and propaquizafop, and additionally, two populations were resistant to propaquizafop only. Different degree of resistance and cross-resistance between resistant populations suggest the involvement of either different point mutations or more than one resistance mechanism. Nevertheless, all populations including the seven ACCase-resistant populations were equally susceptible to ALS inhibitor. An integrated weed management (cultural/non-chemical control tactics and judicious use of herbicides) approach is strongly recommended to minimize the risk of herbicide resistance evolution.
  • A note on the early transcriptional response in leaves and root of potato plants to cadmium exposure

    Mengist, M.F.; Byrne, Stephen; Griffin, Denis; Milbourne, Dan; Department of Agriculture, Food and the Marine; 11SF308 (Teagasc, 2021-03-26)
    Potato plants can accumulate a high amount of cadmium (Cd) in the tuber when grown in soils rich in Cd. The molecular mechanisms governing Cd accumulation in the potato plant are poorly understood. Here we performed an RNA-sequencing experiment to identify genes differentially expressed in the leaf and root of potato during early stages of Cd exposure. Results did not identify any significant transcriptional response in leaves under 1 or 5 mg kg−1 Cd after 72 h. However, in the roots we did identify 2,846 genes that were significantly differentially expressed after 72 h between plants grown in 5 mg kg−1 Cd and controls. These included genes involved in photosynthesis and autophagy being up-regulated, and genes involved in intracellular transport being down-regulated. This study is the first report on the transcriptome-wide response of potato to Cd stress, providing insight into the molecular mechanisms involved in the response.
  • Fertiliser characteristics of stored spent mushroom substrate as a sustainable source of nutrients and organic matter for tillage, grassland and agricultural soils

    Velusami, B.; Jordan, S.N.; Curran, T.; Grogan, Helen; Teagasc Walsh Scholarship Programme (Teagasc, 2021-05-12)
    Spent mushroom substrate (SMS) is an organic manure that can be used with advantage in agriculture. Under European Union (EU) (Good Agricultural Practice for Protection of Waters) Regulations, SMS cannot be applied to land over the winter months and must be stored on concrete surfaces, either covered or uncovered, to prevent nutrient-rich runoff seeping into groundwater. Spent mushroom substrate at four storage facilities, two covered and two uncovered, was analysed for physical and chemical characteristics after storage for up to 12 mo. Significant differences (P<0.05) were identified for all parameters across the four sites, except for pH, but there were no consistent differences that correlated with uncovered or covered storage conditions. The content of nitrogen (N) and manganese (Mn) was significantly lower in uncovered SMS, while the content of iron (Fe) and copper (Cu) was significantly higher. The chemical nitrogen-phospous-potassium (NPK) fertiliser equivalent value of SMS, when applied at a rate of 10 t/ha, was between €105 and €191 per hectare. Nitrogen-phospous-potassium concentrations per kg wet weight were all higher in SMS that was stored under cover, meaning higher chemical fertiliser savings are possible. The high pH of stored SMS (7.8–8.1) means it could be used with good effect on acid soils instead of ground limestone. The low bulk density of SMS (0.545–0.593 g/cm3) makes it an ideal amendment to soils to improve soil structure and quality. There is some variability in the nutrient content of SMS from different sources, so it is advisable to get the material analysed when including in nutrient management plans.
  • Experimental comparison of two methods to study barley responses to partial submergence

    Miricescu, Alexandra; Byrne, Tomás; Doorly, Catherine M; Ng, Carl K Y; Barth, Susanne; Graciet, Emmanuelle; Department of Agriculture, Food and the Marine; Maynooth University Kathleen Lonsdale Institute for Human Health.; 14/S/819 (Biomed Central, 2021-04-13)
    Background Crop yield is dependent on climate conditions, which are becoming both more variable and extreme in some areas of the world as a consequence of global climate change. Increased precipitation and flooding events are the cause of important yield losses due to waterlogging or (partial) submergence of crops in the field. Our ability to screen efficiently and quickly for varieties that have increased tolerance to waterlogging or (partial) submergence is important. Barley, a staple crop worldwide, is particularly sensitive to waterlogging. Screening for waterlogging tolerant barley varieties has been ongoing for many years, but methods used to screen vary greatly, from the type of soil used to the time at which the treatment is applied. This variation makes it difficult to cross-compare results. Results Here, we have devised a scoring system to assess barley tolerance to waterlogging and compare two different methods when partial submergence is applied with either water or a starch solution at an early developmental stage, which is particularly sensitive to waterlogging or partial submergence. The use of a starch solution has been previously shown to result in more reducing soil conditions and has been used to screen for waterlogging tolerance. Conclusions Our results show that the two methods provide similar results to qualitatively rank varieties as tolerant or sensitive, while also affecting plants differently, in that application of a starch solution results in stronger and earlier symptoms than applying partial submergence with water.
  • Physiological and transcriptional response to drought stress among bioenergy grass Miscanthus species

    De Vega, Jose J.; Teshome, Abel; Klaas, Manfred; Grant, Jim; Finnan, John; Barth, Susanne; European Union; Marie Sklodowska-Curie Actions COFUND CAROLINE; UK Research Council; FP7-KBBE-2011-5-289461; et al. (Biomed Central, 2021-03-06)
    Background Miscanthus is a commercial lignocellulosic biomass crop owing to its high biomass productivity, resilience and photosynthetic capacity at low temperature. These qualities make Miscanthus a particularly good candidate for temperate marginal land, where yields can be limited by insufficient or excessive water supply. Differences in response to water stress have been observed among Miscanthus species, which correlated to origin. In this study, we compared the physiological and molecular responses among Miscanthus species under excessive (flooded) and insufficient (drought) water supply in glasshouse conditions. Results A significant biomass loss was observed under drought conditions in all genotypes. M. x giganteus showed a lower reduction in biomass yield under drought conditions compared to the control than the other species. Under flooded conditions, biomass yield was as good as or better than control conditions in all species. 4389 of the 67,789 genes (6.4%) in the reference genome were differentially expressed during drought among four Miscanthus genotypes from different species. We observed the same biological processes were regulated across Miscanthus species during drought stress despite the DEGs being not similar. Upregulated differentially expressed genes were significantly involved in sucrose and starch metabolism, redox, and water and glycerol homeostasis and channel activity. Multiple copies of the starch metabolic enzymes BAM and waxy GBSS-I were strongly up-regulated in drought stress in all Miscanthus genotypes, and 12 aquaporins (PIP1, PIP2 and NIP2) were also up-regulated in drought stress across genotypes. Conclusions Different phenotypic responses were observed during drought stress among Miscanthus genotypes from different species, supporting differences in genetic adaption. The low number of DEGs and higher biomass yield in flooded conditions supported Miscanthus use in flooded land. The molecular processes regulated during drought were shared among Miscanthus species and consistent with functional categories known to be critical during drought stress in model organisms. However, differences in the regulated genes, likely associated with ploidy and heterosis, highlighted the value of exploring its diversity for breeding.
  • Scenarios to limit environmental nitrogen losses from dairy expansion

    Hoekstra, N.J.; Schulte, R.P.O.; Forrestal, P.J.; Hennessy, Deirdre; Krol, Dominika; Lanigan, Gary J.; Müller, C.; Shalloo, Laurence; Wall, David P.; Richards, Karl G.; et al. (Elsevier, 2020-03-10)
    Increased global demand for dairy produce and the abolition of EU milk quotas have resulted in expansion in dairy production across Europe and particularly in Ireland. Simultaneously, there is increasing pressure to reduce the impact of nitrogen (N) losses to air and groundwater on the environment. In order to develop grassland management strategies for grazing systems that meet environmental targets and are economically sustainable, it is imperative that individual mitigation measures for N efficiency are assessed at farm system level. To this end, we developed an excel-based N flow model simulating an Irish grass-based dairy farm, to evaluate the effect of farm management on N efficiency, N losses, production and economic performance. The model was applied to assess the effect of different strategies to achieve the increased production goals on N utilization, N loss pathways and economic performance at farm level. The three strategies investigated included increased milk production through increased grass production, through increased concentrate feeding and by applying a high profit grass-based system. Additionally, three mitigation measures; low ammonia emission slurry application, the use of urease and nitrification inhibitors and the combination of both were applied to the three strategies. Absolute N emissions were higher for all intensification scenarios (up to 124 kg N ha−1) compared to the baseline (80 kg N ha−1) due to increased animal numbers and higher feed and/or fertiliser inputs. However, some intensification strategies showed the potential to reduce the emissions per ton milk produced for some of the N-loss pathways. The model showed that the assessed mitigation measures can play an important role in ameliorating the increased emissions associated with intensification, but may not be adequate to entirely offset absolute increases. Further improvements in farm N use efficiency and alternatives to mineral fertilisers will be required to decouple production from reactive N emissions.

View more