• The Complex Pathway towards Farm-Level Sustainable Intensification: An Exploratory Network Analysis of Stakeholders’ Knowledge and Perception

      Micha, Evgenia; Fenton, Owen; Daly, Karen M.; Kakonyi, Gabriella; Ezzati, Golnaz; Moloney, Thomas; Thornton, Steven; European Union; 675120 (MDPI AG, 2020-03-25)
      Farm-level sustainable intensification of agriculture (SIA) has become an important concept to ensuring food security while minimising negative externalities. However, progress towards its achievement is often constrained by the different perceptions and goals of various stakeholders that affect farm management decisions. This study examines farm-level SIA as a dynamic system with interactive components that are determined by the interests of the stakeholders involved. A systems thinking approach was used to identify and describe the pathways towards farm-level SIA across the three main pillars of sustainability. An explanatory network analysis of fuzzy cognitive maps (FCMs) that were collectively created by representative groups of farmers, farm advisors and policy makers was performed. The study shows that SIA is a complex dynamic system, affected by cognitive beliefs and particular knowledge within stakeholder groups. The study concludes that, although farm-level SIA is a complex process, common goals can be identified in collective decision making.
    • An integrated assessment of nitrogen source, transformation and fate within an intensive dairy system to inform management change

      Clagnan, Elisa; Thornton, Steven F.; Rolfe, Stephen A.; Wells, Naomi S.; Knoeller, Kay; Murphy, John; Tuohy, Patrick; Daly, Karen M.; Healy, Mark G.; Ezzati, Golnaz; et al. (Public Library of Science (PLoS), 2019-07-23)
      From an environmental perspective optimised dairy systems, which follow current regulations, still have low nitrogen (N) use efficiency, high N surplus (kg N ha-1) and enable ad-hoc delivery of direct and indirect reactive N losses to water and the atmosphere. The objective of the present study was to divide an intensive dairy farm into N attenuation capacity areas based on this ad-hoc delivery. Historical and current spatial and temporal multi-level datasets (stable isotope and dissolved gas) were combined and interpreted. Results showed that the farm had four distinct attenuation areas: high N attenuation: characterised by ammonium-N (NH4+-N) below 0.23 mg NH4+-N l-1 and nitrate (NO3--N) below 5.65 mg NO3--N l-1 in surface, drainage and groundwater, located on imperfectly to moderately-well drained soils with high denitrification potential and low nitrous oxide (N2O) emissions (av. 0.0032 mg N2O-N l-1); moderate N attenuation: characterised by low NO3--N concentration in drainage water but high N2O production (0.0317 mg N2O-N l-1) and denitrification potential lower than group 1 (av. δ15N-NO3-: 16.4‰, av. δ18O-NO3-: 9.2‰), on well to moderately drained soils; low N attenuation—area 1: characterised by high NO3--N (av. 6.90 mg NO3--N l-1) in drainage water from well to moderately-well drained soils, with low denitrification potential (av. δ15N-NO3-: 9.5‰, av. δ18O-NO3-: 5.9‰) and high N2O emissions (0.0319 mg N2O l-1); and low N attenuation—area 2: characterised by high NH4+-N (av. 3.93 mg NH4+-N l-1 and high N2O emissions (av. 0.0521 mg N2O l-1) from well to imperfectly drained soil. N loads on site should be moved away from low attenuation areas and emissions to air and water should be assessed.
    • An integrated assessment of nitrogen source, transformation and fate within an intensive dairy system to inform management change

      Clagnan, Elisa; Thornton, Steven F; Rolfe, Stephen A.; Wells, Naomi; Knoeller, Kay; Murphy, John; Tuohy, Patrick; Daly, Karen M.; Healy, Mark G.; Ezzati, Golnaz; et al. (PLoS ONE, 2019-07-23)
      From an environmental perspective optimised dairy systems, which follow current regulations, still have low nitrogen (N) use efficiency, high N surplus (kg N ha-1) and enable ad-hoc delivery of direct and indirect reactive N losses to water and the atmosphere. The objective of the present study was to divide an intensive dairy farm into N attenuation capacity areas based on this ad-hoc delivery. Historical and current spatial and temporal multi-level datasets (stable isotope and dissolved gas) were combined and interpreted. Results showed that the farm had four distinct attenuation areas: high N attenuation: characterised by ammonium-N (NH4+-N) below 0.23 mg NH4+-N l-1 and nitrate (NO3--N) below 5.65 mg NO3--N l-1 in surface, drainage and groundwater, located on imperfectly to moderately-well drained soils with high denitrification potential and low nitrous oxide (N2O) emissions (av. 0.0032 mg N2O-N l-1); moderate N attenuation: characterised by low NO3--N concentration in drainage water but high N2O production (0.0317 mg N2O-N l-1) and denitrification potential lower than group 1 (av. δ15N-NO3-: 16.4‰, av. δ18O-NO3-: 9.2‰), on well to moderately drained soils; low N attenuation—area 1: characterised by high NO3--N (av. 6.90 mg NO3--N l-1) in drainage water from well to moderately-well drained soils, with low denitrification potential (av. δ15N-NO3-: 9.5‰, av. δ18O-NO3-: 5.9‰) and high N2O emissions (0.0319 mg N2O l-1); and low N attenuation—area 2: characterised by high NH4+-N (av. 3.93 mg NH4+-N l-1 and high N2O emissions (av. 0.0521 mg N2O l-1) from well to imperfectly drained soil. N loads on site should be moved away from low attenuation areas and emissions to air and water should be assessed.