• Acoustic measurement differences on trees and logs from hardwoods in wet and dry condition

      Llana, Daniel F.; Short, Ian; Harte, A. M.; Department of Agriculture, Food and Marine; 15-C-666 (U. S. Department of Agriculture, 2019-09)
      Acoustic velocities measured on standing trees using time-of-flight (TOF) devices have been found to be between 7% and 36% higher for softwoods than those in logs using resonance techniques based on longitudinal frequencies. This effect was explained in three different ways: (1) TOF devices on standing trees measure outerwood containing more mature wood while resonance methods assess the whole crosssection, (2) the variation in the velocity is due to loading conditions in standing trees, while logs are free of loads and (3) the acoustic waves are dilatational waves in the case of TOF measurements on standing trees and one-dimensional longitudinal waves in the case of resonance on logs. This is an important topic considering the fact that resonance methods are considered more accurate for predicting mechanical properties and it has been proposed that correction factors should be applied on TOF measurements. In the present work, four hardwoods from Irish forests were studied and, on average, TOF velocities measured in the forest above fibre saturation point (FSP) were 19.8% higher than those from resonance measurements taken on logs immediately after felling. However, this difference reduced to 5.4% when the measurements were repeated at a moisture content (MC) of about 18% in the laboratory. Therefore, there is a MC effect on the velocity differences. Furthermore, higher differences were systematically found in older specimens in wet condition. However, this age effect was small in most cases.
    • Using variable importance measures to identify a small set of SNPs to predict heading date in perennial ryegrass.

      Byrne, Stephen; Conaghan, Patrick; Barth, Susanne; Arojju, Sai Krishna; Casler, Michael; Michel, Thibauld; Velmurugan, Janaki; Milbourne, Dan; E.U. Marie Skłodowska-Curie Fellowship; Teagasc Walsh Fellowship Programme; et al. (Nature, 2017-06-15)
      Prior knowledge on heading date enables the selection of parents of synthetic cultivars that are well matched with respect to time of heading, which is essential to ensure plants put together will cross pollinate. Heading date of individual plants can be determined via direct phenotyping, which has a time and labour cost. It can also be inferred from family means, although the spread in days to heading within families demands roguing in first generation synthetics. Another option is to predict heading date from molecular markers. In this study we used a large training population consisting of individual plants to develop equations to predict heading date from marker genotypes. Using permutation-based variable selection measures we reduced the marker set from 217,563 to 50 without impacting the predictive ability. Opportunities exist to develop a cheap assay to sequence a small number of regions in linkage disequilibrium with heading date QTL in thousands of samples. Simultaneous use of these markers in non-linkage based marker-assisted selection approaches, such as paternity testing, should enhance the utility of such an approach.
    • Variable response to phosphorus mitigation measures across the nutrient transfer continuum in a dairy grassland catchment

      Murphy, Paul N. C.; Mellander, Per-Erik; Melland, A. R.; Buckley, Cathal; Shore, Mairead; Shortle, Ger; Wall, David; Treacy, Mark; Shine, Oliver; Mechan, Sarah; et al. (Elsevier, 2015-04-20)
      Phosphorus (P) loss from soils to water can be a major pressure on freshwater quality and dairy farming, with higher animal stocking rates, may lead to potentially greater nutrient source pressures. In many countries with intensive agriculture, regulation of P management aims to minimise these losses. This study examined the P transfer continuum, from source to impact, in a dairy-dominated, highly stocked, grassland catchment with free-draining soils over three years. The aim was to measure the effects of P source management and regulation on P transfer across the nutrient transfer continuum and subsequent water quality and agro-economic impacts. Reduced P source pressure was indicated by: (a) lower average farm-gate P balances (2.4 kg ha−1 yr−1), higher P use efficiencies (89%) and lower inorganic fertilizer P use (5.2 kg ha−1 yr−1) relative to previous studies; (b) almost no recorded P application during the winter closed period, when applications were prohibited, to avoid incidental transfers; and (c) decreased proportions of soils with excessive P concentrations (32–24%). Concurrently, production and profitability remained comparable with the top 10% of dairy farmers nationally with milk outputs of 14,585 l ha−1, and gross margins of € 3130 ha−1. Whilst there was some indication of a response in P delivery in surface water with declines in quick flow and interflow pathway P concentrations during the winter closed period for P application, delayed baseflows in the wetter third year resulted in elevated P concentrations for long durations and there were no clear trends of improving stream biological quality. This suggests a variable response to policy measures between P source pressure and delivery/impact where the strength of any observable trend is greater closer to the source end of the nutrient transfer continuum and a time lag occurs at the other end. Policy monitoring and assessment efforts will need to be cognisant of this.