• Ammonia emissions from cattle dung, urine and urine with dicyandiamide in a temperate grassland

      Fischer, K.; Burchill, William; Lanigan, Gary; Kaupenjohann, M.; Chambers, B. J.; Richards, Karl G.; Forrestal, Patrick J.; Department of Agriculture, Food and the Marine, Ireland; RSF13S430; 11S138 (Wiley, 03/09/2015)
      Deposition of urine and dung in pasture-based livestock production systems is a major source of ammonia (NH3) volatilization, contributing to the eutrophication and acidification of water bodies and to indirect nitrous oxide emissions. The objectives of this study were to (i) measure NH3 volatilization from dung and urine in three seasons, (ii) test the effect of spiking urine with the nitrification inhibitor dicyandiamide (DCD) on NH3 volatilization and (iii) generate NH3 emission factors (EFs) for dung, urine and urine + DCD in temperate maritime grassland. Accordingly, simulated dung, urine and urine spiked with DCD (at 30 kg DCD/ha equivalent rate) patches were applied to temperate grassland. Treatments were applied three times in 2014 with one measurement of NH3 loss being completed in spring, summer and autumn. The NH3-N EF was highest in spring, which was most likely due to the near absence of rainfall throughout the duration of loss measurement. The EFs across the experiments ranged between 2.8 and 5.3% (mean 3.9%) for dung, 8.7 and 14.9% (mean 11.2%) for urine and 9.5 and 19.5% (mean 12.9%) for urine + DCD, showing that ammonia loss from dung was significantly lower than from urine. Aggregating country-specific emission data such as those from the current experiment with data from climatically similar regions (perhaps in a weighted manner which accounts for the relative abundance of certain environmental conditions) along with modelling is a potentially resourceefficient approach for refining national ammonia inventories.
    • Ammonia emissions from cattle dung, urine and urine with dicyandiamide in a temperate grassland

      Fischer, K.; Burchill, William; Lanigan, Gary; Kaupenjohann, M.; Chambers, B. J.; Richards, Karl G.; Forrestal, Patrick J.; Department of Agriculture, Food and the Marine, Ireland (Wiley, 03/09/2015)
      Deposition of urine and dung in pasture-based livestock production systems is a major source of ammonia (NH3) volatilization, contributing to the eutrophication and acidification of water bodies and to indirect nitrous oxide emissions. The objectives of this study were to (i) measure NH3 volatilization from dung and urine in three seasons, (ii) test the effect of spiking urine with the nitrification inhibitor dicyandiamide (DCD) on NH3 volatilization and (iii) generate NH3 emission factors (EFs) for dung, urine and urine + DCD in temperate maritime grassland. Accordingly, simulated dung, urine and urine spiked with DCD (at 30 kg DCD/ha equivalent rate) patches were applied to temperate grassland. Treatments were applied three times in 2014 with one measurement of NH3 loss being completed in spring, summer and autumn. The NH3-N EF was highest in spring, which was most likely due to the near absence of rainfall throughout the duration of loss measurement. The EFs across the experiments ranged between 2.8 and 5.3% (mean 3.9%) for dung, 8.7 and 14.9% (mean 11.2%) for urine and 9.5 and 19.5% (mean 12.9%) for urine + DCD, showing that ammonia loss from dung was significantly lower than from urine. Aggregating country-specific emission data such as those from the current experiment with data from climatically similar regions (perhaps in a weighted manner which accounts for the relative abundance of certain environmental conditions) along with modelling is a potentially resource-efficient approach for refining national ammonia inventories.
    • Ammonia emissions from urea, stabilized urea and calcium ammonium nitrate: insights into loss abatement in temperate grassland

      Forrestal, Patrick J.; Harty, Mary A.; Carolan, Rachael; Lanigan, Gary; Watson, C. J.; Laughlin, Ronald J.; McNeill, Gavin; Chambers, B. J.; Richards, Karl G.; Teagasc Walsh Fellowship Programme; et al. (Wiley, 17/11/2015)
      Fertilizer nitrogen (N) contributes to ammonia (NH3) emissions, which European Union member states have committed to reduce. This study focused on evaluating NH3-N loss from a suite of N fertilizers over multiple applications, and gained insights into the temporal and seasonal patterns of NH3-N loss from urea in Irish temperate grassland using wind tunnels. The fertilizers evaluated were calcium ammonium nitrate (CAN), urea and urea with the N stabilizers N-(n-butyl) thiophosphoric triamide (NBPT), dicyandiamide (DCD), DCD+NBPT and a maleic and itaconic acid polymer (MIP). 200 (and 400 for urea only) kg N/ha/yr was applied in five equal applications over the growing season at two grassland sites (one for MIP). Mean NH3-N losses from CAN were 85% lower than urea and had highly variable loss (range 45% points). The effect of DCD on NH3 emissions was variable. MIP did not decrease NH3-N loss, but NBPT caused a 78.5% reduction and, when combined with DCD, a 74% reduction compared with urea alone. Mean spring and summer losses from urea were similar, although spring losses were more variable with both the lowest and highest losses. Maximum NH3-N loss usually occurred on the second day after application. These data highlight the potential of stabilized urea to alter urea NH3-N loss outcomes in temperate grassland, the need for caution when using season as a loss risk guide and that urea hydrolysis in temperate grassland initiates quickly. Micrometeorological measurements focused specifically on urea are needed to determine absolute NH3-N loss levels in Irish temperate grassland.
    • Ammonia emissions from urea, stabilized urea and calcium ammonium nitrate: insights into loss abatement in temperate grassland

      Forrestal, Patrick J.; Harty, Mary A.; Carolan, Rachael; Lanigan, Gary; Watson, C. J.; Laughlin, Ronald J.; McNeill, Gavin; Chambers, B. J.; Richards, Karl G.; Department of Agriculture, Food and the Marine, Ireland; et al. (Wiley, 17/11/2015)
      Fertilizer nitrogen (N) contributes to ammonia (NH3) emissions, which European Union member states have committed to reduce. This study focused on evaluating NH3-N loss from a suite of N fertilizers over multiple applications, and gained insights into the temporal and seasonal patterns of NH3-N loss from urea in Irish temperate grassland using wind tunnels. The fertilizers evaluated were calcium ammonium nitrate (CAN), urea and urea with the N stabilizers N-(n-butyl) thiophosphoric triamide (NBPT), dicyandiamide (DCD), DCD+NBPT and a maleic and itaconic acid polymer (MIP). 200 (and 400 for urea only) kg N/ha/yr was applied in five equal applications over the growing season at two grassland sites (one for MIP). Mean NH3-N losses from CAN were 85% lower than urea and had highly variable loss (range 45% points). The effect of DCD on NH3 emissions was variable. MIP did not decrease NH3-N loss, but NBPT caused a 78.5% reduction and, when combined with DCD, a 74% reduction compared with urea alone. Mean spring and summer losses from urea were similar, although spring losses were more variable with both the lowest and highest losses. Maximum NH3-N loss usually occurred on the second day after application. These data highlight the potential of stabilized urea to alter urea NH3-N loss outcomes in temperate grassland, the need for caution when using season as a loss risk guide and that urea hydrolysis in temperate grassland initiates quickly. Micrometeorological measurements focused specifically on urea are needed to determine absolute NH3-N loss levels in Irish temperate grassland.
    • Application of Dexter’s soil physical quality index: an Irish case study

      Fenton, Owen; Vero, Sara E.; Schulte, Rogier P.; O'Sullivan, Lilian; Bondi, G.; Creamer, Rachel E.; Department of Agriculture, Food and the Marine, Ireland; 6582 (Teagasc (Agriculture and Food Development Authority), Ireland, 26/08/2017)
      Historically, due to a lack of measured soil physical data, the quality of Irish soils was relatively unknown. Herein, we investigate the physical quality of the national representative profiles of Co. Waterford. To do this, the soil physical quality (SPQ) S-Index, as described by Dexter (2004a,b,c) using the S-theory (which seeks the inflection point of a soil water retention curve [SWRC]), is used. This can be determined using simple (S-Indirect) or complex (S-Direct) soil physical data streams. Both are achievable using existing data for the County Waterford profiles, but until now, the suitability of this S-Index for Irish soils has never been tested. Indirect-S provides a generic characterisation of SPQ for a particular soil horizon, using simplified and modelled information (e.g. texture and SWRC derived from pedo-transfer functions), whereas Direct-S provides more complex site-specific information (e.g. texture and SWRC measured in the laboratory), which relates to properties measured for that exact soil horizon. Results showed a significant correlation between S-Indirect (Si) and S-Direct (Sd). Therefore, the S-Index can be used in Irish soils and presents opportunities for the use of Si at the national scale. Outlier horizons contained >6% organic carbon (OC) and bulk density (Bd) values <1 g/cm3 and were not suitable for Si estimation. In addition, the S-Index did not perform well on excessively drained soils. Overall correlations of Si. with Bd and of Si. with OC% for the dataset were detected. Future work should extend this approach to the national scale dataset in the Irish Soil Information System.
    • Assessment of water-limited winter wheat yield potential at spatially contrasting sites in Ireland using a simple growth and development model

      Lynch, J.P.; Fealy, Reamonn; Doyle, D.; Black, L.; Spink, John; Department of Agriculture, Food and the Marine, Ireland (Teagasc (Agriculture and Food Development Authority), Ireland, 19/09/2017)
      Although Irish winter wheat yields are among the highest globally, increases in the profitability of this crop are required to maintain its economic viability. However, in order to determine if efforts to further increase Irish wheat yields are likely to be successful, an accurate estimation of the yield potential is required for different regions within Ireland. A winter wheat yield potential model (WWYPM) was developed, which estimates the maximum water-limited yield achievable, within the confines of current genetic resources and technologies, using parameters for winter wheat growth and development observed recently in Ireland and a minor amount of daily meteorological input (maximum and minimum daily temperature, total daily rainfall and total daily incident radiation). The WWYPM is composed of three processes: (i) an estimation of potential green area index, (ii) an estimation of light interception and biomass accumulation and (iii) an estimation of biomass partitioning to grain yield. Model validation indicated that WWYPM estimations of water-limited yield potential (YPw) were significantly related to maximum yields recorded in variety evaluation trials as well as regional average and maximum farm yields, reflecting the model’s sensitivity to alterations in the climatic environment with spatial and seasonal variations. Simulations of YPw for long-term average weather data at 12 sites located at spatially contrasting regions of Ireland indicated that the typical YPw varied between 15.6 and 17.9 t/ha, with a mean of 16.7 t/ha at 15% moisture content. These results indicate that the majority of sites in Ireland have the potential to grow high-yielding crops of winter wheat when the effects of very high rainfall and other stresses such as disease incidence and nutrient deficits are not considered.
    • Broadleaf thinning in Ireland - a review of European silvicultural best practice

      Hawe, Jerry; Short, Ian; Department of Agriculture, Food and the Marine, Ireland (Society of Irish Foresters, 2016)
      A substantial first-rotation broadleaf plantation resource in Ireland is progressively entering a thinning phase. Silvicultural best practice in support of such a management intervention needs to be developed for this new woodland resource to achieve its maximum commercial potential. National research trials are key to the provision of information for the development of best practice. Determining the current state-of-the-art is a prerequisite to the design and implementation of appropriate research trials. This study reviews the literature concerning the fundamental principles of broadleaf thinning with particular regard to timing, intensity and impacts on crop tree growth response, focussing on a range of commonly planted broadleaf species in Ireland. The overall aim of this review is to gain a fuller understanding of the most effective thinning methodology to be employed to maximise the production of high quality hardwood timber. In doing so it is intended that the information presented may support ongoing and future research trials with regard to potential silvicultural treatments to apply, data types and analysis and the likely results of practical application to commercial forestry.
    • Can the agronomic performance of urea equal calcium ammonium nitrate across nitrogen rates in temperate grassland?

      Forrestal, Patrick J.; Harty, Mary A.; Carolan, Rachael; Watson, C. J.; Lanigan, Gary; Wall, David; Hennessy, Deirdre; Richards, Karl G.; Teagasc Walsh Fellowship Programme; Department of Agriculture, Food and the Marine, Ireland; et al. (Wiley, 23/03/2017)
      In temperate grassland, urea has been shown to have lower nitrous oxide emissions compared to ammonium nitrate-based fertilizer and is less expensive. However, nitrogen (N) loss via ammonia volatilization from urea raises questions regarding yield performance and efficiency. This study compares the yield and N offtake of grass fertilized with urea, calcium ammonium nitrate (CAN) and urea treated with the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) at six site-years. Five annual fertilizer N rates (100–500 kg N/ha) were applied in five equal splits of 20–100 kg N/ha during the growing season. On average, urea produced slightly better yields than CAN in spring (103.5% of CAN yield) and slightly poorer yields in summer (98.4% of CAN yield). There was no significant difference in annual grass yield between urea, CAN and urea + NBPT. Urea had the lowest cost per tonne of DM grass yield produced. However, the urea treatment had lower N offtake than CAN and this difference was more pronounced as the N rate increased. There was no difference in N offtake between urea + NBPT and CAN. While this study shows that urea produced yields comparable to CAN, urea apparent fertilizer N recovery (AFNR) tends to be lower. Urea selection in place of CAN will increase national ammonia emissions which is problematic for countries with targets to reduce ammonia emissions. Promisingly, NBPT allows the agronomic performance of urea to consistently equal CAN across N rates by addressing the ammonia loss limitations of urea.
    • Carbon and nitrogen dynamics and greenhouse gas emissions in constructed wetlands treating wastewater: a review

      Department of Agriculture, Food and the Marine; Jahangir, Mohammad M. R.; Richards, Karl G.; Healy, Mark G.; Gill, L.; Muller, Christoph; Johnston, Paul; Fenton, Owen; Irish Research Council; Department of Agriculture, Food and the Marine, Ireland (European Geosciences Union, 18/01/2016)
      The removal efficiency of carbon (C) and nitrogen (N) in constructed wetlands (CWs) is very inconsistent and frequently does not reveal whether the removal processes are due to physical attenuation or whether the different species have been transformed to other reactive forms. Previous research on nutrient removal in CWs did not consider the dynamics of pollution swapping (the increase of one pollutant as a result of a measure introduced to reduce a different pollutant) driven by transformational processes within and around the system. This paper aims to address this knowledge gap by reviewing the biogeochemical dynamics and fate of C and N in CWs and their potential impact on the environment, and by presenting novel ways in which these knowledge gaps may be eliminated. Nutrient removal in CWs varies with the type of CW, vegetation, climate, season, geographical region, and management practices. Horizontal flow CWs tend to have good nitrate (NO3−) removal, as they provide good conditions for denitrification, but cannot remove ammonium (NH4+) due to limited ability to nitrify NH4+. Vertical flow CWs have good NH4+ removal, but their denitrification ability is low. Surface flow CWs decrease nitrous oxide (N2O) emissions but increase methane (CH4) emissions; subsurface flow CWs increase N2O and carbon dioxide (CO2) emissions, but decrease CH4 emissions. Mixed species of vegetation perform better than monocultures in increasing C and N removal and decreasing greenhouse gas (GHG) emissions, but empirical evidence is still scarce. Lower hydraulic loadings with higher hydraulic retention times enhance nutrient removal, but more empirical evidence is required to determine an optimum design. A conceptual model highlighting the current state of knowledge is presented and experimental work that should be undertaken to address knowledge gaps across CWs, vegetation and wastewater types, hydraulic loading rates and regimes, and retention times, is suggested. We recommend that further research on process-based C and N removal and on the balancing of end products into reactive and benign forms is critical to the assessment of the environmental performance of CWs.
    • Carbon cycling in temperate grassland under elevated temperature

      Jansen-Willems, Anne B.; Lanigan, Gary; Grunhage, Ludger; Muller, Christoph; Department of Agriculture, Food and the Marine, Ireland; Teagasc Walsh Fellowship Programme; RSF 10/SC/716 (Wiley, 01/11/2016)
      An increase in mean soil surface temperature has been observed over the last century, and it is predicted to further increase in the future. The effect of increased temperature on ecosystem carbon fluxes in a permanent temperate grassland was studied in a long-term (6 years) field experiment, using multiple temperature increments induced by IR lamps. Ecosystem respiration (R-eco) and net ecosystem exchange (NEE) were measured and modeled by a modified Lloyd and Taylor model including a soil moisture component for R-eco (average R2 of 0.78) and inclusion of a photosynthetic component based on temperature and radiation for NEE (R2 = 0.65). Modeled NEE values ranged between 2.3 and 5.3 kg CO2 m−2 year−1, depending on treatment. An increase of 2 or 3°C led to increased carbon losses, lowering the carbon storage potential by around 4 tonnes of C ha−1 year−1. The majority of significant NEE differences were found during night-time compared to daytime. This suggests that during daytime the increased respiration could be offset by an increase in photosynthetic uptake. This was also supported by differences in δ13C and δ18O, indicating prolonged increased photosynthetic activity associated with the higher temperature treatments. However, this increase in photosynthesis was insufficient to counteract the 24 h increase in respiration, explaining the higher CO2 emissions due to elevated temperature.
    • Confirmation of co-denitrification in grazed grassland

      Selbie, Diana R.; Lanigan, Gary; Laughlin, Ronald J.; Di, H.J.; Moir, James L.; Cameron, K.C.; Clough, Timothy J.; Watson, C. J.; Grant, Jim; Somers, Cathal; et al. (Nature Publishing Group, 30/11/2015)
      Pasture-based livestock systems are often associated with losses of reactive forms of nitrogen (N) to the environment. Research has focused on losses to air and water due to the health, economic and environmental impacts of reactive N. Di-nitrogen (N2) emissions are still poorly characterized, both in terms of the processes involved and their magnitude, due to financial and methodological constraints. Relatively few studies have focused on quantifying N2 losses in vivo and fewer still have examined the relative contribution of the different N2 emission processes, particularly in grazed pastures. We used a combination of a high 15N isotopic enrichment of applied N with a high precision of determination of 15N isotopic enrichment by isotope-ratio mass spectrometry to measure N2 emissions in the field. We report that 55.8 g N m−2 (95%, CI 38 to 77 g m−2) was emitted as N2 by the process of co-denitrification in pastoral soils over 123 days following urine deposition (100 g N m−2), compared to only 1.1 g N m−2 (0.4 to 2.8 g m−2) from denitrification. This study provides strong evidence for co-denitrification as a major N2 production pathway, which has significant implications for understanding the N budgets of pastoral ecosystems.
    • Denitrification and indirect N2O emissions in groundwater: Hydrologic and biogeochemical influences

      Jahangir, Mohammad M. R.; Johnston, Paul; Barrett, Maria; Khalil, Mohammed I.; Groffman, P.M.; Boeckx, P.; Fenton, Owen; Murphy, John; Richards, Karl G.; Department of Agriculture, Food and the Marine, Ireland; et al. (Elsevier, 08/07/2013)
      Identification of specific landscape areas with high and low groundwater denitrification potential is critical for improved management of agricultural nitrogen (N) export to ground and surface waters and indirect nitrous oxide (N2O) emissions. Denitrification products together with concurrent hydrogeochemical properties were analysed over two years at three depths at two low (L) and two high (H) permeability agricultural sites in Ireland. Mean N2O–N at H sites were significantly higher than L sites, and decreased with depth. Conversely, excess N2–N were significantly higher at L sites than H sites and did not vary with depth. Denitrification was a significant pathway of nitrate (NO3−–N) reduction at L sites but not at H sites, reducing 46–77% and 4–8% of delivered N with resulting mean NO3−–N concentrations of 1–4 and 12–15 mg N L− 1 at L and H sites, respectively. Mean N2O–N emission factors (EF5g) were higher than the most recent Intergovernmental Panel on Climate Change (IPCC, 2006) default value and more similar to the older IPCC (1997) values. Recharge during winter increased N2O but decreased excess dinitrogen (excess N2–N) at both sites, probably due to increased dissolved oxygen (DO) coupled with low groundwater temperatures. Denitrifier functional genes were similar at all sites and depths. Data showed that highly favourable conditions prevailed for denitrification to occur — multiple electron donors, low redox potential (Eh < 100 mV), low DO (< 2 mg L− 1), low permeability (ks < 0.005 m·d− 1) and a shallow unsaturated zone (< 2 m). Quantification of excess N2–N in groundwater helps to close N balances at the local, regional and global scales.
    • Denitrification potential in subsoils: A mechanism to reduce nitrate leaching to groundwater

      Jahangir, Mohammad M. R.; Khalil, Mohammed I.; Johnston, Paul; Cardenas, L. M.; Hatch, D.J.; Butler, Mark; Barrett, Maria; O'Flaherty, Vincent; Richards, Karl G.; Department of Agriculture, Food and the Marine, Ireland; et al. (Elsevier, 28/05/2011)
      Understanding subsurface denitrification potential will give greater insights into landscape nitrate (NO3−) delivery to groundwater and indirect nitrous oxide (N2O) emissions to the atmosphere. Potential denitrification rates and ratios of N2O/(N2O + N2) were investigated in intact soil cores collected from 0–0.10, 0.45–0.55 and 1.20–1.30 m depths representing A, B and C soil horizons, respectively from three randomly selected locations within a single intensively managed grazed grassland plot in south eastern Ireland. The soil was moderately well drained with textures ranging from loam to clay loam (gleysol) in the A to C horizon. An experiment was carried out by amending soils from each horizon with (i) 90 mg NO3−–N as KNO3, (ii) 90 mg NO3−–N + 150 mg glucose-C, (iii) 90 mg NO3−–N + 150 mg DOC (dissolved organic carbon, prepared using top soil of intensively managed grassland) kg−1 dry soil. An automated laboratory incubation system was used to measure simultaneously N2O and N2, at 15 ◦C, with the moisture content raised by 3% (by weight) above the moisture content at field capacity (FC), giving a water-filled pore space (WFPS) of 80, 85 and 88% in the A, B and C horizons, respectively. There was a significant effect (p < 0.01) of soil horizon and added carbon on cumulative N2O emissions. N2O emissions were higher from the A than the B and C horizons and were significantly lower from soils that received only nitrate than soils that received NO3 − + either of the C sources. The two C sources gave similar N2O emissions. The N2 fluxes differed significantly (p < 0.05) only between the A and C horizons. During a 17-day incubation, total denitrification losses of the added N decreased significantly (p < 0.01) with soil depth and were increased by the addition of either C source. The fraction of the added N lost from each horizon were A: 25, 61, 45%; B: 12, 29, 28.5% and C: 4, 20, 18% for nitrate, nitrate + glucose-C and nitrate + DOC, respectively. The ratios of N2O to N2O + N2 differed significantly (p < 0.05) only between soil horizons, being higher in the A (0.58–0.75) than in the deeper horizons (0.10–0.36 in B and 0.06–0.24 in C), clearly indicating the potential of subsoils for a more complete reduction of N2O to N2. Stepwise multiple regression analysis revealed that N2O flux increased with total organic C and total N but decreased with NO3 −–N which together explained 88% of the variance (p < 0.001). The N2 flux was best explained (R2 = 0.45, p < 0.01) by soluble organic nitrogen (SON) (positive) and with NO3−–N (negative). Stepwise multiple regression revealed a best fit for total denitrification rates which were positive for total C and negative for NO3 −–N with the determination coefficient of 0.76 (p < 0.001). The results suggest that without C addition, potential denitrification rate below the root zone was low. Therefore, the added C sources in subsoils can satisfactorily increase nitrate depletion via denitrification where the mole fraction of N2O would be further reduced to N2 during diffusional transport through the soil profile to the atmosphere and/or to groundwater. Subsoil denitrification can be accelerated either through introducing C directly into permeable reactive barriers and/or indirectly, by irrigating dirty water and manipulating agricultural plant composition and diversity.
    • Determination and Occurrence of Phenoxyacetic Acid Herbicides and Their Transformation Products in Groundwater Using Ultra High Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry

      McManus, Sarah-Louise; Moloney, Mary; Richards, Karl G.; Coxon, Catherine E.; Danaher, Martin; Teagasc Walsh Fellowship Programme; Department of Agriculture, Food and the Marine, Ireland (MDPI AG., Basel, Switzerland, 10/12/2014)
      A sensitive method was developed and validated for ten phenoxyacetic acid herbicides, six of their main transformation products (TPs) and two benzonitrile TPs in groundwater. The parent compounds mecoprop, mecoprop-p, 2,4-D, dicamba, MCPA, triclopyr, fluroxypr, bromoxynil, bentazone, and 2,3,6-trichlorobenzoic acid (TBA) are included and a selection of their main TPs: phenoxyacetic acid (PAC), 2,4,5-trichloro-phenol (TCP), 4-chloro-2-methylphenol (4C2MP), 2,4-dichlorophenol (DCP), 3,5,6-trichloro-2-pyridinol (T2P), and 3,5-dibromo-4-hydroxybenzoic acid (BrAC), as well as the dichlobenil TPs 2,6-dichlorobenzamide (BAM) and 3,5-dichlorobenzoic acid (DBA) which have never before been determined in Irish groundwater. Water samples were analysed using an efficient ultra-high performance liquid chromatography (UHPLC) method in an 11.9 min separation time prior to detection by tandem mass spectrometry (MS/MS). The limit of detection (LOD) of the method ranged between 0.00008 and 0.0047 µg·L−1 for the 18 analytes. All compounds could be detected below the permitted limits of 0.1 µg·L−1 allowed in the European Union (EU) drinking water legislation [1]. The method was validated according to EU protocols laid out in SANCO/10232/2006 with recoveries ranging between 71% and 118% at the spiked concentration level of 0.06 µg·L−1. The method was successfully applied to 42 groundwater samples collected across several locations in Ireland in March 2012 to reveal that the TPs PAC and 4C2MP were detected just as often as their parent active ingredients (a.i.) in groundwater.
    • Developing the EU Farm Accountancy Data Network to derive indicators around the sustainable use of nitrogen and phosphorus at farm level.

      Buckley, Cathal; Wall, David; Moran, Brian; Murphy, Paul N. C.; Department of Agriculture, Food and the Marine, Ireland (Springer, 2015-07)
      This study uses a national farm survey which is part of the European Union (EU) Farm Accountancy Data Network (FADN) to develop environmental sustainability indicators in the use of nitrogen (N) and phosphorus (P) across a range of farm systems in the Republic of Ireland. Farm level micro data were used to calculate all inputs and outputs of N and P that cross the farm gate and to derive balances (kg ha-1) and overall use efficiencies across 827 farms in 2012. The sample is populated weighted to represents 71,480 farms nationally. Results indicated an average N balance of 71.0 kg ha-1 and use efficiency of 36.7% across the nationally representative sample. Nitrogen balances were between two and four times higher across specialist dairy farms compared to livestock rearing and specialist tillage systems. Nitrogen use efficiency was generally lowest across milk producing systems compared to livestock rearing and tillage systems. Phosphorus balance and use efficiency averaged 4.7 kg ha-1 and 79.6% respectively across the sample. Specialist tillage and dairying farms had higher average P balances compared to other livestock based systems. The approach developed in this analysis will form the benchmark for temporal analysis across these indicators for future nutrient balance and efficiency trends and could assist other members of the EU FADN to develop similar nationally representative indicators.
    • A disease resistance locus on potato and tomato chromosome 4 exhibits a conserved multipartite structure displaying different rates of evolution in different lineages

      Destefanis, M.; Nagy, Istvan; Rigney, Brian; Bryan, Glenn J; McLean, Karen; Hein, Ingo; Griffin, Denis; Milbourne, Dan; Teagasc Walsh Fellowship Programme; Department of Agriculture, Food and the Marine, Ireland; et al. (Biomed Central, 24/10/2015)
      Background In plant genomes, NB-LRR based resistance (R) genes tend to occur in clusters of variable size in a relatively small number of genomic regions. R-gene sequences mostly differentiate by accumulating point mutations and gene conversion events. Potato and tomato chromosome 4 harbours a syntenic R-gene locus (known as the R2 locus in potato) that has mainly been examined in central American/Mexican wild potato species on the basis of its contribution to resistance to late blight, caused by the oomycete pathogen Phytophthora infestans. Evidence to date indicates the occurrence of a fast evolutionary mode characterized by gene conversion events at the locus in these genotypes. Results A physical map of the R2 locus was developed for three Solanum tuberosum genotypes and used to identify the tomato syntenic sequence. Functional annotation of the locus revealed the presence of numerous resistance gene homologs (RGHs) belonging to the R2 gene family (R2GHs) organized into a total of 4 discrete physical clusters, three of which were conserved across S. tuberosum and tomato. Phylogenetic analysis showed clear orthology/paralogy relationships between S. tuberosum R2GHs but not in R2GHs cloned from Solanum wild species. This study confirmed that, in contrast to the wild species R2GHs, which have evolved through extensive sequence exchanges between paralogs, gene conversion was not a major force for differentiation in S. tuberosum R2GHs, and orthology/paralogy relationships have been maintained via a slow accumulation of point mutations in these genotypes. Conclusions S. tuberosum and Solanum lycopersicum R2GHs evolved mostly through duplication and deletion events, followed by gradual accumulation of mutations. Conversely, widespread gene conversion is the major evolutionary force that has shaped the locus in Mexican wild potato species. We conclude that different selective forces shaped the evolution of the R2 locus in these lineages and that co-evolution with a pathogen steered selection on different evolutionary paths.
    • The ecology of the European badger (Meles meles) in Ireland: a review

      Byrne, Andrew W.; Sleeman, D. Paddy; O'Keeffe, James; Davenport, John; Department of Agriculture, Food and the Marine, Ireland; Teagasc Walsh Fellowship Programme (Royal Irish Academy, 30/04/2012)
      The badger is an ecologically and economically important species. Detailed knowledge of aspects of the ecology of this animal in Ireland has only emerged through research over recent decades. Here, we review what is known about the species' Irish populations and compare these findings with populations in Britain and Europe. Like populations elsewhere, setts are preferentially constructed on south or southeast facing sloping ground in well-drained soil types. Unlike in Britain, Irish badger main setts are less complex and most commonly found in hedgerows. Badgers utilise many habitat types, but greater badger densities have been associated with landscapes with high proportions of pasture and broadleaf woodlands. Badgers in Ireland tend to have seasonally varied diets, with less dependence on earthworms than some other populations in northwest Europe. Recent research suggests that females exhibit later onset and timing of reproductive events, smaller litter sizes and lower loss of blastocysts than populations studied in Britain. Adult social groups in Ireland tend to be smaller than in Britain, though significantly larger than social groups from continental Europe. Although progress has been made in estimating the distribution and density of badger populations, national population estimates have varied widely in the Republic of Ireland. Future research should concentrate on filling gaps in our knowledge, including population models and predictive spatial modelling that will contribute to vaccine delivery, management and conservation strategies.
    • The effect of cattle slurry in combination with nitrate and the nitrification inhibitor dicyandiamide on in situ nitrous oxide and dinitrogen emissions

      McGeough, K. L.; Laughlin, Ronald J.; Watson, C. J.; Muller, Christoph; Ernfors, M.; Cahalan, E.; Richards, Karl G.; Department of Agriculture, Food and the Marine, Ireland; RSF 07 519 (European Geosciences Union, 04/12/2012)
      A field study was conducted to determine the effect of the nitrification inhibitor dicyandiamide (DCD) on N2O and N2 emissions after cattle slurry (CS) application in the presence of nitrate (NO3) fertiliser on seven different occasions (between March 2009 and March 2011). N2O emissions from CS in the presence of NO3 fertiliser were very high (0.4–8.7% of applied N) over a 20-day period, under mild moist conditions. Emissions were significantly larger from the CS treatment compared to an NH4+-N source, supplying the same rate of N as in the slurry. This study supports the view that organic fertilisers should not be applied at the same time as nitrate-based fertilisers, as significant increases in N2O emissions occur. The average N2O mole fraction (N2O/(N2O + N2)) over all seven application dates was 0.34 for CSNO3 compared to 0.24 for the NH4ClNO3 treatment, indicating the dominance of N2 emissions. The rate of nitrification in CSNO3 was slower than in NH4ClNO3, and DCD was found to be an effective nitrification inhibitor in both treatments. However, as N2O emissions were found to be predominantly associated with the NO3 pool, the effect of DCD in lowering N2O emissions is limited in the presence of a NO3 fertiliser. To obtain the maximum cost-benefit of DCD in lowering N2O emissions, under mild moist conditions, it should not be applied to a nitrate containing fertiliser (e.g. ammonium nitrate or calcium ammonium nitrate), and therefore the application of DCD should be restricted to ammonium-based organic or synthetic fertilisers.
    • Effect of chemical amendments to dairy soiled water and time between application and rainfall on phosphorus and sediment losses in runoff

      Serrenho, Ana; Fenton, Owen; Murphy, Paul N. C.; Grant, Jim; Healy, Mark G.; Department of Agriculture, Food and the Marine, Ireland; RSF 07 525 (Elsevier, 15/07/2012)
      Dairy soiled water (DSW) is a dilute, low nutrient effluent produced on Irish dairy farms through the regular washing down of milking parlours and holding areas. In Ireland, there is no closed period for the land application of DSW except where heavy rain is forecast within 48 h. Chemical amendments have the potential to decrease phosphorus (P) and suspended sediment (SS) loss from DSW applied to land. This study examined the impact of three time intervals (12, 24 and 48 h) between DSW application and rainfall and five treatments (control, unamended DSW, and DSW amended with lime, alum or ferric chloride (FeCl2)) on P and sediment losses from an intact grassland soil in runoff boxes. Rainfall was simulated at 10.5 ± 1 mm h− 1. Phosphorus concentrations (1–1.6 mg L− 1) in runoff from DSW application, while not quantitative measures of P loss to surface waters in the field, indicated the importance of incidental P losses and that the current 48 h restriction in Ireland is prudent. Unamended DSW application increased P loss by, on average, 71%, largely due to an increase in particulate phosphorus (PP) loss. All three amendments were effective in decreasing P and SS losses in runoff and, apart from the SS results for lime, were significantly different (p < 0.05) to the control at at least one time point. Lime (a 64% reduction in total phosphorus (TP) in comparison with DSW only) was less effective than alum or FeCl2, likely due to the lower solubility of CaCO3 in water. Chemical amendment showed potential to decrease P losses from land application of DSW, but the efficacy of such amendments would need to be assessed in field trials and a cost–benefit analysis conducted to further examine whether they could be practically implemented on farms.
    • Effect of organic and conventional cultivation techniques on yield, phenolic content, and sensory parameters in two carrot varieties

      Reilly, Kim; Gaffney, Michael; Brunton, Nigel; Department of Agriculture, Food and the Marine, Ireland; 06/NITARFC6 (Teagasc, 2011)
      Carrots are one of the most important field grown vegetables in Ireland with a farm gate value of 16 million euros in 2007. They contain health promoting bioactive compounds including carotenoids, phenolics and polyacetylenes. Organically grown vegetables are often perceived as healthier and to have better flavour. The objective of this study was to determine levels of phenolics and flavonoids in organic and conventionally grown carrots, and to determine if they can be distinguished by taste.