• The Agrodiversity Experiment: three years of data from a multisite study in intensively managed grasslands

      Kirwan, Laura; Connolly, John; Brophy, C.; Baadshaug, Ole; Belanger, Gilles; Black, Alistair D; Camus, Tim; Collins, Rosemary; Cop, Jure; Delgado, Ignacio; et al. (Ecological Society of America, 11/06/2014)
      Intensively managed grasslands are globally prominent ecosystems. We investigated whether experimental increases in plant diversity in intensively managed grassland communities can increase their resource use efficiency. This work consisted of a coordinated, continental-scale 33-site experiment. The core design was 30 plots, representing 15 grassland communities at two seeding densities. The 15 communities were comprised of four monocultures (two grasses and two legumes) and 11 four-species mixtures that varied in the relative abundance of the four species at sowing. There were 1028 plots in the core experiment, with another 572 plots sown for additional treatments. Sites agreed a protocol and employed the same experimental methods with certain plot management factors, such as seeding rates and number of cuts, determined by local practice. The four species used at a site depended on geographical location, but the species were chosen according to four functional traits: a fast-establishing grass, a slow-establishing persistent grass, a fast-establishing legume, and a slow-establishing persistent legume. As the objective was to maximize yield for intensive grassland production, the species chosen were all high-yielding agronomic species. The data set contains species-specific biomass measurements (yield per species and of weeds) for all harvests for up to four years at 33 sites. Samples of harvested vegetation were also analyzed for forage quality at 26 sites. Analyses showed that the yield of the mixtures exceeded that of the average monoculture in >97% of comparisons. Mixture biomass also exceeded that of the best monoculture (transgressive overyielding) at about 60% of sites. There was also a positive relationship between the diversity of the communities and aboveground biomass that was consistent across sites and persisted for three years. Weed invasion in mixtures was very much less than that in monocultures. These data should be of interest to ecologists studying relationships between diversity and ecosystem function and to agronomists interested in sustainable intensification. The large spatial scale of the sites provides opportunity for analyses across spatial (and temporal) scales. The database can also complement existing databases and meta-analyses on biodiversity–ecosystem function relationships in natural communities by focusing on those same relationships within intensively managed agricultural grasslands.
    • Characterization of Environmentally Persistent Escherichia coli Isolates Leached from an Irish Soil

      Brennan, Fiona P.; Abram, Florence; Chinalia, Fabio A.; Richards, Karl G.; O'Flaherty, Vincent; Irish Research Council for Science, Engineering and Technology; Science Foundation Ireland (American Society for Microbiology, 12/02/2010)
      Soils are typically considered to be suboptimal environments for enteric organisms, but there is increasing evidence that Escherichia coli populations can become resident in soil under favorable conditions. Previous work reported the growth of autochthonous E. coli in a maritime temperate Luvic Stagnosol soil, and this study aimed to characterize, by molecular and physiological means, the genetic diversity and physiology of environmentally persistent E. coli isolates leached from the soil. Molecular analysis (16S rRNA sequencing, enterobacterial repetitive intergenic consensus PCR, pulsed-field gel electrophoresis, and a multiplex PCR method) established the genetic diversity of the isolates (n = 7), while physiological methods determined the metabolic capability and environmental fitness of the isolates, relative to those of laboratory strains, under the conditions tested. Genotypic analysis indicated that the leached isolates do not form a single genetic grouping but that multiple genotypic groups are capable of surviving and proliferating in this environment. In physiological studies, environmental isolates grew well across a broad range of temperatures and media, in comparison with the growth of laboratory strains. These findings suggest that certain E. coli strains may have the ability to colonize and adapt to soil conditions. The resulting lack of fecal specificity has implications for the use of E. coli as an indicator of fecal pollution in the environment.
    • Chemical amendment of pig slurry: control of runoff related risks due to episodic rainfall events up to 48 h after application

      O'Flynn, Cornelius J.; Healy, Mark G.; Wilson, Paul; Hoekstra, Nyncke J.; Troy, Shane M.; Fenton, Owen; Irish Research Council for Science, Engineering and Technology (Springer, 01/09/2013)
      Losses of phosphorus (P) from soil and slurry during episodic rainfall events can contribute to eutrophication of surface water. However, chemical amendments have the potential to decrease P and suspended solids (SS) losses from land application of slurry. Current legislation attempts to avoid losses to a water body by prohibiting slurry spreading when heavy rainfall is forecast within 48 h. Therefore, in some climatic regions, slurry spreading opportunities may be limited. The current study examined the impact of three time intervals (TIs; 12, 24 and 48 h) between pig slurry application and simulated rainfall with an intensity of 11.0±0.59 mm h-1. Intact grassed soil samples, 1 m long, 0.225 m wide and 0.05 m deep, were placed in runoff boxes and pig slurry or amended pig slurry was applied to the soil surface. The amendments examined were: (1) commercial-grade liquid alum (8% Al2O3) applied at a rate of 0.88:1 [Al/total phosphorus (TP)] (2) commercial-grade liquid ferric chloride (38% FeCl3) applied at a rate of 0.89:1 [Fe/TP] and (3) commercial-grade liquid poly-aluminium chloride (10 % Al2O3) applied at a rate of 0.72:1 [Al/TP]. Results showed that an increased TI between slurry application and rainfall led to decreased P and SS losses in runoff, confirming that the prohibition of land-spreading slurry if heavy rain is forecast in the next 48 h is justified. Averaged over the three TIs, the addition of amendment reduced all types of P losses to concentrations significantly different (p<0.05) to those from unamended slurry, with no significant difference between treatments. Losses from amended slurry with a TI of 12 h were less than from unamended slurry with a TI of 48 h, indicating that chemical amendment of slurry may be more effective at ameliorating P loss in runoff than current TI-based legislation. Due to the high cost of amendments, their incorporation into existing management practices can only be justified on a targeted basis where inherent soil characteristics deem their usage suitable to receive amended slurry.
    • Ecosystem function enhanced by combining four functional types of plant species in intensively-managed grassland mixtures: a three-year continental-scale field experiment

      Finn, John; Kirwan, Laura; Connolly, John; Sebastia, Maria Teresa; Helgadottir, Aslaug; Baadshaug, Ole; Belanger, Gilles; Black, Alistair D; Brophy, C.; Collins, Rosemary; et al. (Wiley-Blackwell, 22/02/2013)
      1. A co-ordinated continental-scale field experiment across 31 sites was used to compare the biomass yield of monocultures and four-species mixtures associated with intensively managed agricultural grassland systems. To increase complementarity in resource use, each of the four species in the experimental design represented a distinct functional type derived from two levels of each of two functional traits, nitrogen acquisition (N2-fixing legume or non-fixing grass) crossed with temporal development (fast-establishing or temporally persistent). Relative abundances of the four functional types in mixtures were systematically varied at sowing to vary the evenness of the same four species in mixture communities at each site, and sown at two levels of seed density. 2. Across multiple years, the total yield (including weed biomass) of the mixtures exceeded that of the average monoculture in >97% of comparisons. It also exceeded that of the best monoculture (transgressive overyielding) in about 60% of sites, with a mean yield ratio of mixture to best-performing monoculture of 1.07 across all sites. Analyses based on yield of sown species only (excluding weed biomass) demonstrated considerably greater transgressive overyielding (significant at about 70% of sites, ratio of mixture to best-performing monoculture = 1.18). 3. Mixtures maintained a resistance to weed invasion over at least three years. In mixtures, median values indicate <4% of weed biomass in total yield, whereas the median percentage of weeds in monocultures increased from 15% in year 1 to 32% in year 3. 4. Within each year, there was a highly significant relationship (P<0.0001) between sward evenness and the diversity effect (excess of mixture performance over that predicted from the monoculture performances of component species). At lower evenness values, increases in community evenness resulted in an increased diversity effect, but the diversity effect was not significantly different from the maximum diversity effect across a wide range of higher evenness values. The latter indicates the robustness of the diversity effect to changes in species’ relative abundances. 5. Across sites with three complete years of data (24 of the 31 sites), the effect of interactions between the fast-establishing and temporal persistent trait levels of temporal development was highly significant and comparable in magnitude to effects of interactions between N2-fixing and non-fixing trait levels of nitrogen acquisition. 6. Synthesis and applications. The design of grassland mixtures is relevant to farm-level strategies to achieve sustainable intensification. Experimental evidence indicated significant yield benefits of four-species agronomic mixtures which yielded more than the highest-yielding monoculture at most sites. The results are relevant for agricultural practice, and show how grassland mixtures can be designed to improve resource complementarity, increase yields and reduce weed invasion. The yield benefits were robust to considerable changes in the relative proportions of the four species, which is extremely useful for practical management of grassland swards.
    • Evaluating E. coli Transport Risk in Soil using Dye and Bromide Tracers

      Brennan, Fiona P.; Kramers, Gaelene; Grant, Jim; O'Flaherty, Vincent; Holden, Nicholas M.; Richards, Karl G.; Irish Research Council for Science, Engineering and Technology (Soil Science Society of America, 2012-03)
      Dye and bromide tracers are established methods of assessing the presence, function, and extent of hydrological pathways in soil. Prediction of E. coli transport pathways in soil, using brilliant blue (BB) dye and bromide tracers, was investigated using in situ field trials on three grassland soil types, under different moisture regimes. Passive transport through preferential flow routes was the dominant mechanism of vertical E. coli transport in the soils studied. However, lateral movement of E. coli from macropores to the soil matrix was also observed. E. coli transport was mainly associated with visualized infiltration patterns but there was some evidence of differential transport of BB and E. coli. Maximum E. coli depth was found not to co-occur with BB and bromide tracers in 44 and 71% of samples, respectively. Soil type and season of application were important in the distribution and maximum depth of E. coli, and the relationship between the bacterium and its tracers. Moisture content was found to be important for the relationship between E. coli and BB, and the extent of this effect varied with soil type. There was a trend of increasing E. coli concentrations to a peak sample moisture concentration of 0.3 to 0.4 g g−1 dry soil followed by a decrease. Overall BB was found to have greater predictive value than Br. Correlation and co-occurrence analysis found that shortly after land application both BB and Br were good predictors of E. coli transport pathways and distribution under certain conditions, but underestimate risk to shallow groundwater.
    • Impact of chemically amended pig slurry on greenhouse gas emissions, soil properties and leachate

      O'Flynn, Cornelius J.; Healy, Mark G.; Lanigan, Gary; Troy, Shane M.; Somers, Cathal; Fenton, Owen; Irish Research Council for Science, Engineering and Technology (Elsevier, 10/07/2013)
      The effectiveness of chemical amendment of pig slurry to ameliorate phosphorus (P) losses in runoff is well studied, but research mainly has concentrated only on the runoff pathway. The aims of this study were to investigate changes to leachate nutrient losses, soil properties and greenhouse gas (GHG) emissions due to the chemical amendment of pig slurry spread at 19 kg total phosphorus (TP), 90 kg total nitrogen (TN), and 180 kg total carbon (TC) ha-1. The amendments examined were: (1) commercial grade liquid alum (8% Al2O3) applied at a rate of 0.88:1 [Al:TP] (2) commercial-grade liquid ferric chloride (38% FeCl3) applied at a rate of 0.89:1 [Fe:TP] and (3) commercial-grade liquid poly-aluminium chloride (PAC) (10% Al2O3) applied at a rate of 0.72:1 [Al:TP]. Columns filled with sieved soil were incubated for 8 mo at 10oC and were leached with 160 ml (19 mm) distilled water wk-1. All amendments reduced the Morgan’s phosphorus and water extractable P content of the soil to that of the soil-only treatment, indicating that they have the ability to reduce P loss in leachate following slurry application. There were no significant differences between treatments for nitrogen (N) or carbon (C) in leachate or soil, indicating no deleterious impact on reactive N emissions or soil C cycling. Chemical amendment posed no significant change to GHG emissions from pig slurry, and in the cases of alum and PAC, reduced cumulative N2O and CO2 losses. Chemical amendment of land applied pig slurry can reduce P in runoff without any negative impact on nutrient leaching and GHG emissions. Future work must be conducted to ascertain if more significant reductions in GHG emissions are possible with chemical amendments.
    • Impact of pig slurry amendments on phosphorus, suspended sediment and metal losses in laboratory runoff boxes under simulated rainfall

      O'Flynn, Cornelius J.; Fenton, Owen; Wilson, Paul; Healy, Mark G.; Irish Research Council for Science, Engineering and Technology (Elsevier, 30/12/2012)
      Losses of phosphorus (P) when pig slurry applications to land are followed by a rainfall event or losses from soils with high P contents can contribute to eutrophication of receiving waters. The addition of amendments to pig slurry spread on high P Index soils may reduce P and suspended sediment (SS) losses. This hypothesis was tested at laboratory-scale using runoff boxes under simulated rainfall conditions. Intact grassed soil samples, 100 cm-long, 22.5 cm-wide and 5 cm-deep, were placed in runoff boxes and pig slurry or amended pig slurry was applied to the soil surface. The amendments examined were: (1) commercial grade liquid alum (8% Al2O3) applied at a rate of 0.88:1 [Al:total phosphorus (TP)] (2) commercial-grade liquid ferric chloride (38% FeCl3) applied at a rate of 0.89:1 [Fe:TP] and (3) commercial-grade liquid poly-aluminium chloride (PAC) (10% Al2O3) applied at a rate of 0.72:1 [Al:TP]. The grassed soil was then subjected to three rainfall events (10.3 ± 0.15 mm h−1) at time intervals of 48, 72, and 96 h following slurry application. Each sod received rainfall on 3 occasions. Results across three rainfall events showed that for the control treatment, the average flow weighted mean concentration (FWMC) of TP was 0.61 mg L−1, of which 31% was particulate phosphorus (PP), and the average FWMC of SS was 38.1 mg L−1. For the slurry treatment, there was an average FWMC of 2.2 mg TP L−1, 47% of which was PP, and the average FWMC of SS was 71.5 mg L−1. Ranked in order of effectiveness from best to worst, PAC reduced the average FWMC of TP to 0.64 mg L−1 (42% PP), FeCl3 reduced TP to 0.91 mg L−1 (52% PP) and alum reduced TP to 1.08 mg L−1 (56% PP). The amendments were in the same order when ranked for effectiveness at reducing SS: PAC (74%), FeCl3 (66%) and alum (39%). Total phosphorus levels in runoff plots receiving amended slurry remained above those from soil only, indicating that, although incidental losses could be mitigated by chemical amendment, chronic losses from the high P index soil in the current study could not be reduced.
    • Long-Term Persistence and Leaching of Escherichia coli in Temperate Maritime Soils

      Brennan, Fiona P.; O'Flaherty, Vincent; Kramers, Gaelene; Grant, Jim; Richards, Karl G.; Irish Research Council for Science, Engineering and Technology (American Society for Microbiology, 2009-12)
      Enteropathogen contamination of groundwater, including potable water sources, is a global concern. The spreading on land of animal slurries and manures, which can contain a broad range of pathogenic microorganisms, is considered a major contributor to this contamination. Some of the pathogenic microorganisms applied to soil have been observed to leach through the soil into groundwater, which poses a risk to public health. There is a critical need, therefore, for characterization of pathogen movement through the vadose zone for assessment of the risk to groundwater quality due to agricultural activities. A lysimeter experiment was performed to investigate the effect of soil type and condition on the fate and transport of potential bacterial pathogens, using Escherichia coli as a marker, in four Irish soils (n 9). Cattle slurry (34 tonnes per ha) was spread on intact soil monoliths (depth, 1 m; diameter, 0.6 m) in the spring and summer. No effect of treatment or the initial soil moisture on the E. coli that leached from the soil was observed. Leaching of E. coli was observed predominantly from one soil type (average, 1.11 0.77 CFU ml 1), a poorly drained Luvic Stagnosol, under natural rainfall conditions, and preferential flow was an important transport mechanism. E. coli was found to have persisted in control soils for more than 9 years, indicating that autochthonous E. coli populations are capable of becoming naturalized in the low-temperature environments of temperate maritime soils and that they can move through soil. This may compromise the use of E. coli as an indicator of fecal pollution of waters in these regions.