• Quantitative risk assessment of antimicrobials in biosolids applied on agricultural land and potential translocation into food

      Clarke, Rachel; Healy, Mark G.; Fenton, Owen; Cummins, Enda; European Union ERASMUS+; 2014-1-MT01-K200-000327 (Elsevier, 2017-12-30)
      The use of biosolids as a fertiliser may be an indirect route for contaminants into the food chain. One of the main concerns regarding the spreading of biosolids on agricultural land is the potential uptake of contaminants into plants which may bio-transfer into grazing animals that supply the food chain directly (e.g. meat and milk) and hence are subsequently consumed. The aim of this project was to create a quantitative risk assessment model to estimate the fate and translocation of triclosan (TCS) and triclocarban (TCC) into the feed (grass) and food chain with subsequent human exposure. The model's results indicate that TCS and TCC have low potential to transfer into milk and beef following the ingestion of contaminated grass by dairy cows. Mean estimated TCS and TCC residues in milk and beef show that TCC had the greatest concentration (mean values of 7.77 × 10− 6 mg kg− 1 in milk and 1.36 × 10− 4 mg kg− 1 in beef). Human exposure results show that TCC was greater for milk consumption in infants (1–4 years) (mean value 1.14 × 10− 7 mg kg− 1 bw d− 1) and for beef consumption by teens (12–17 years) (mean value 6.87 × 10− 8 mg kg− 1 bw d− 1). Concentrations of TCS and TCC were well below the estimated acceptable daily intake (ADI). Human health risk was estimated by evaluation of the hazard quotient (HQ), which used the NOAEL as a toxicity endpoint, combined with milk and beef human exposure estimates. HQ results show that all values were < 0.01 (no existing risk). A sensitivity analysis revealed that the Kow and initial concentration in biosolids as the parameters of greatest importance (correlation coefficients 0.91 and 0.19, respectively). This highlights the importance of physio-chemical properties of the compounds and their detection in biosolids post wastewater treatment along with their persistence in soil following application. This model is a valuable tool in which to ascertain the potential transfer of contaminants in the environment into animal forage with knock on consequences for exposure through the human food chain.
    • Risk Assessment of E. coli Survival Up to the Grazing Exclusion Period After Dairy Slurry, Cattle Dung, and Biosolids Application to Grassland

      Ashekuzzaman, S.M.; Richards, Karl G.; Ellis, Stephanie; Tyrrel, Sean; O'Leary, Emma; Griffiths, Bryan; Ritz, Karl; Fenton, Owen; European Union; 265269 (Frontiers in Sustainable Food Systems, 10/07/2018)
      Grassland application of dairy slurry, cattle dung, and biosolids offers an opportunity to recycle valuable nutrients (N, P, and K), which may all introduce pathogens to the soil environment. Herein, a temporal risk assessment of the survival of Escherichia coli (E. coli) up to 40 days in line with the legislated grazing exclusion time points after application was examined across six scenarios: (1) soil and biosolids mixture, (2) biosolids amended soil, (3) dairy slurry application, (4) cattle dung on pasture, (5) comparison of scenario 2, 3, and 4, and (6) maximum legal vs. excess rate of application for scenario 2 and 3. The risk model input parameters were taken or derived from regressions within the literature and an uncertainty analysis (n = 1,000 trials for each scenario) was conducted. Scenario 1 results showed that E. coli survival was higher in the soil/biosolids mixture for higher biosolids portion, resulting in the highest 20 day value of residual E. coli concentration (i.e., C20, log10 CFU g−1 dw) of 1.0 in 100% biosolids or inoculated soil and the lowest C20 of 0.098 in 75/25 soil/biosolids ratio, respectively, in comparison to an average initial value of 6.4 log10 CFU g−1 dw. The E. coli survival across scenario 2, 3, and 4 showed that the C20 value of biosolids (0.57 log10 CFU g−1 dw) and dairy slurry (0.74 log10 CFU ml−1) was 2.9–3.7 times smaller than that of cattle dung (2.12 log10 CFU g−1 dw). The C20 values of biosolids and dairy slurry associated with legal and excess application rates ranged from 1.14 to 1.71 log10 CFU ha−1, which is a significant reduction from the initial concentration range (12.99 to 14.83 log10 CFU ha−1). The E. coli survival in un-amended soil was linear with a very low decay rate resulting in a higher C20 value than that of biosolids or dairy slurry. The risk assessment and uncertainly analysis showed that the residual concentrations in biosolids/dairy slurry applied soil after 20 days would be 45–57% lower than that of the background soil E. coli concentration. This means the current practice of grazing exclusion times is safe to reduce the risk of E. coli transmission into the soil environment.