• The challenge of managing soil functions at multiple scales: An optimisation study of the synergistic and antagonistic trade-offs between soil functions in Ireland

      Valujeva, Kristine; O’Sullivan, Lilian; Gutzler, Carsten; Fealy, Reamonn; Schulte, Rogier P.; European Commission (Elsevier, 2016-08-09)
      Recent forecasts show a need to increase agricultural production globally by 60% from 2005 to 2050, in order to meet a rising demand from a growing population. This poses challenges for scientists and policy makers to formulate solutions on how to increase food production and simultaneously meet environmental targets such as the conservation and protection of water, the conservation of biodiversity, and the mitigation of greenhouse gas emissions. As soil and land are subject to growing pressure to meet both agronomic and environmental targets, there is an urgent need to understand to what extent these diverging targets can be met simultaneously. Previously, the concept of Functional Land Management (FLM) was developed as a framework for managing the multifunctionality of land. In this paper, we deploy and evaluate the concept of FLM, using a real case-study of Irish agriculture. We investigate a number of scenarios, encompassing combinations of intensification, expansion and land drainage, for managing three soil functions, namely primary productivity, water purification and carbon sequestration. We use proxy-indicators (milk production, nitrate concentrations and area of new afforestation) to quantify the ‘supply’ of these three soil functions, and identify the relevant policy targets to frame the ‘demand’ for these soil functions. Specifically, this paper assesses how soil management and land use management interact in meeting these multiple targets simultaneously, by employing a non-spatial land use model for livestock production in Ireland that assesses the supply of soil functions for contrasting soil drainage and land use categories. Our results show that, in principle, it is possible to manage these three soil functions to meet both agronomic and environmental objectives, but as we add more soil functions, the management requirements become increasingly complex. In theory, an expansion scenario could meet all of the objectives simultaneously. However, this scenario is highly unlikely to materialise due to farm fragmentation, low land mobility rates and the challenging afforestation rates required for achieving the greenhouse gas reduction targets. In the absence of targeted policy interventions, an unmanaged combination of scenarios is more likely to emerge. The challenge for policy formation on future land use is how to move from an unmanaged combination scenario towards a managed combination scenario, in which the soil functions are purposefully managed to meet current and future agronomic and environmental targets, through a targeted combination of intensification, expansion and land drainage. Such purposeful management requires that the supply of each soil function is managed at the spatial scale at which the corresponding demand manifests itself. This spatial scale may differ between the soil functions, and may range from farm scale to national scale. Finally, our research identifies the need for future research to also consider and address the misalignment of temporal scales between the supply and demand of soil functions.
    • Functional Land Management for managing soil functions: A case-study of the trade-off between primary productivity and carbon storage in response to the intervention of drainage systems in Ireland

      O'Sullivan, Lilian; Creamer, Rachel E.; Fealy, Reamonn; Lanigan, Gary; Simo, Iolanda; Fenton, Owen; Carfrae, J.; Schulte, Rogier; Department of Agriculture, Food and the Marine (Elsevier, 2015-09-30)
      Globally, there is growing demand for increased agricultural outputs. At the same time, the agricultural industry is expected to meet increasingly stringent environmental targets. Thus, there is an urgent pressure on the soil resource to deliver multiple functions simultaneously. The Functional Land Management framework (Schulte et al., 2014) is a conceptual tool designed to support policy making to manage soil functions to meet these multiple demands. This paper provides a first example of a practical application of the Functional Land Management concept relevant to policy stakeholders. In this study we examine the trade-offs, between the soil functions ‘primary productivity’ and ‘carbon cycling and storage’, in response to the intervention of land drainage systems applied to ‘imperfectly’ and ‘poorly’ draining managed grasslands in Ireland. These trade-offs are explored as a function of the nominal price of ‘Certified Emission Reductions’ or ‘carbon credits’. Also, these trade-offs are characterised spatially using ArcGIS to account for spatial variability in the supply of soil functions.To manage soil functions, it is essential to understand how individual soil functions are prioritised by those that are responsible for the supply of soil functions – generally farmers and foresters, and those who frame demand for soil functions – policy makers. Here, in relation to these two soil functions, a gap exists in relation to this prioritisation between these two stakeholder groups. Currently, the prioritisation and incentivisation of these competing soil functions is primarily a function of CO2 price. At current CO2 prices, the agronomic benefits outweigh the monetised environmental costs. The value of CO2 loss would only exceed productivity gains at either higher CO2 prices or at a reduced discount period rate. Finally, this study shows large geographic variation in the environmental cost: agronomic benefit ratio. Therein, the Functional Land Management framework can support the development of policies that are more tailored to contrasting biophysical environments and are therefore more effective than ‘blanket approaches’ allowing more specific and effective prioritisation of contrasting soil functions.
    • Functional Land Management: Bridging the Think-Do-Gap using a multi-stakeholder science policy interface

      O'Sullivan, Lilian; Wall, David; Creamer, Rachel E.; Bampa, Francesca; Schulte, Rogier P.; European Union; National Development Plan 2007–2013.; 635201; 677407; 13S468 (Springer, 2017-11)
      Functional Land Management (FLM) is proposed as an integrator for sustainability policies and assesses the functional capacity of the soil and land to deliver primary productivity, water purification and regulation, carbon cycling and storage, habitat for biodiversity and recycling of nutrients. This paper presents the catchment challenge as a method to bridge the gap between science, stakeholders and policy for the effective management of soils to deliver these functions. Two challenges were completed by a wide range of stakeholders focused around a physical catchment model—(1) to design an optimised catchment based on soil function targets, (2) identify gaps to implementation of the proposed design. In challenge 1, a high level of consensus between different stakeholders emerged on soil and management measures to be implemented to achieve soil function targets. Key gaps including knowledge, a mix of market and voluntary incentives and mandatory measures were identified in challenge 2.