• Functional Land Management for managing soil functions: A case-study of the trade-off between primary productivity and carbon storage in response to the intervention of drainage systems in Ireland

      O'Sullivan, Lilian; Creamer, Rachel E.; Fealy, Reamonn; Lanigan, Gary; Simo, Iolanda; Fenton, Owen; Carfrae, J.; Schulte, Rogier; Department of Agriculture, Food and the Marine (Elsevier, 2015-09-30)
      Globally, there is growing demand for increased agricultural outputs. At the same time, the agricultural industry is expected to meet increasingly stringent environmental targets. Thus, there is an urgent pressure on the soil resource to deliver multiple functions simultaneously. The Functional Land Management framework (Schulte et al., 2014) is a conceptual tool designed to support policy making to manage soil functions to meet these multiple demands. This paper provides a first example of a practical application of the Functional Land Management concept relevant to policy stakeholders. In this study we examine the trade-offs, between the soil functions ‘primary productivity’ and ‘carbon cycling and storage’, in response to the intervention of land drainage systems applied to ‘imperfectly’ and ‘poorly’ draining managed grasslands in Ireland. These trade-offs are explored as a function of the nominal price of ‘Certified Emission Reductions’ or ‘carbon credits’. Also, these trade-offs are characterised spatially using ArcGIS to account for spatial variability in the supply of soil functions.To manage soil functions, it is essential to understand how individual soil functions are prioritised by those that are responsible for the supply of soil functions – generally farmers and foresters, and those who frame demand for soil functions – policy makers. Here, in relation to these two soil functions, a gap exists in relation to this prioritisation between these two stakeholder groups. Currently, the prioritisation and incentivisation of these competing soil functions is primarily a function of CO2 price. At current CO2 prices, the agronomic benefits outweigh the monetised environmental costs. The value of CO2 loss would only exceed productivity gains at either higher CO2 prices or at a reduced discount period rate. Finally, this study shows large geographic variation in the environmental cost: agronomic benefit ratio. Therein, the Functional Land Management framework can support the development of policies that are more tailored to contrasting biophysical environments and are therefore more effective than ‘blanket approaches’ allowing more specific and effective prioritisation of contrasting soil functions.
    • Land Drainage - A farmer’s practical guide to draining grassland in Ireland

      Tuohy, Patrick; Fenton, Owen; O'Loughlin, James; Humphreys, James (Teagasc, 30/07/2013)
      No drainage work should be carried out before the drainage characteristics of the soil are established by a site and soil test pit investigation. • Two types of drainage system exist: a groundwater drainage system and a shallow drainage system. The design of the system depends entirely on the drainage characteristics of the soil. • Distinguishing between the two types of drainage systems essentially comes down to whether or not a permeable layer is present (at a workable depth) that will allow the flow of water with relative ease. If such a layer is evident, a piped drain system at that depth is likely to be effective. If no such layer is found during soil test pit investigations, it will be necessary to improve the drainage capacity of the soil. This involves a disruption technique such as moling, gravel moling or subsoiling in tandem with collector drains. • Drains are not effective unless they are placed in a free draining soil layer or complimentary measures (mole drainage, subsoiling) are used to improve soil drainage capacity. If water is not moving through the soil in one or other of these two ways, the water table will not be lowered. • Outfall level must not dictate the drainage system depth. If a free draining layer is present, it must be utilised. • Drain pipes should always be used for drains longer than 30 m. If these get blocked it is a drainage stone and not a drainage pipe issue. • Drainage stone should not be filled to the top of the field trench except for very limited conditions (the bottom of an obvious hollow). Otherwise it is an extremely expensive way of collecting little water. • Most of the stone being used for land drainage today is too big. Clean aggregate in the 10–40 mm (0.4 to 1.5 inch approx) grading band should be used. Generally you get what you pay for. • Subsoiling is not effective unless a shallow impermeable layer is being broken or field drains have been installed prior to the operation. Otherwise it will not have any long-term effect and may do more harm than good. • Most land drainage systems are poorly maintained. Open drains should be clean and as deep as possible and field drains feeding into them should be regularly rodded or jetted.