• Factors affecting nitrate distribution in shallow groundwater under a beef farm in South Eastern Ireland

      Fenton, Owen; Richards, Karl G.; Kirwan, Laura; Khalil, Mohammed I.; Healy, Mark G.; Department of Agriculture, Food and the Marine, Ireland; RSF 07 525 (Elsevier, 2009-07)
      Groundwater contamination was characterised using a methodology which combines shallow groundwater geochemistry data from 17 piezometers over a 2 yr period in a statistical framework and hydrogeological techniques. Nitrate-N (NO3-N) contaminant mass flux was calculated across three control planes (rows of piezometers) in six isolated plots. Results showed natural attenuation occurs on site although the method does not directly differentiate between dilution and denitrification. It was further investigated whether NO3-N concentration in shallow groundwater (<5 m below ground level) generated from an agricultural point source on a 4.2 ha site on a beef farm in SE Ireland could be predicted from saturated hydraulic conductivity (Ksat) measurements, ground elevation (m Above Ordnance Datum), elevation of groundwater sampling (screen opening interval) (m AOD) and distance from a dirty water point pollution source. Tobit regression, using a background concentration threshold of 2.6 mg NO3-N L-1 showed, when assessed individually in a step wise procedure, Ksat was significantly related to groundwater NO3-N concentration. Distance of the point dirty water pollution source becomes significant when included with Ksat in the model. The model relationships show areas with higher Ksat values have less time for denitrification to occur, whereas lower Ksat values allow denitrification to occur. Areas with higher permeability transport greater NO3-N fluxes to ground and surface waters. When the distribution of Cl- was examined by the model, Ksat and ground elevation had the most explanatory power but Ksat was not significant pointing to dilution having an effect. Areas with low NO3 concentration and unaffected Cl- concentration points to denitrification, low NO3 concentration and low Cl- chloride concentration points to dilution and combining these findings allows areas of denitrification and dilution to be inferred. The effect of denitrification is further supported as mean groundwater NO3-N was significantly (P<0.05) related to groundwater N2/Ar ratio, redox potential (Eh), dissolved O2 and N2 and was close to being significant with N2O (P=0.08). Calculating contaminant mass flux across more than one control plane is a useful tool to monitor natural attenuation. This tool allows the identification of hot spot areas where intervention other than natural attenuation may be needed to protect receptors.
    • Factors affecting nitrate distribution in shallow groundwater under a beef farm in South Eastern Ireland

      Fenton, Owen; Richards, Karl G.; Kirwan, Laura; Khalil, Mohammed I.; Healy, Mark G.; Department of Agriculture, Food and the Marine, Ireland (Elsevier, 2009-07)
      Groundwater contamination was characterised using a methodology which combines shallow groundwater geochemistry data from 17 piezometers over a 2 yr period in a statistical framework and hydrogeological techniques. Nitrate–N (NO3-N) contaminant mass flux was calculated across three control planes (rows of piezometers) in six isolated plots. Results showed natural attenuation occurs on site although the method does not directly differentiate between dilution and denitrification. It was further investigated whether NO3-N concentration in shallow groundwater (<5 m below ground level) generated from an agricultural point source on a 4.2 ha site on a beef farm in SE Ireland could be predicted from saturated hydraulic conductivity (Ksat) measurements, ground elevation (m Above Ordnance Datum), elevation of groundwater sampling (screen opening interval) (m AOD) and distance from a dirty water point pollution source. Tobit regression, using a background concentration threshold of 2.6 mg NO3-N L−1 showed, when assessed individually in a step wise procedure, Ksat was significantly related to groundwater NO3-N concentration. Distance of the point dirty water pollution source becomes significant when included with Ksat in the model. The model relationships show areas with higher Ksat values have less time for denitrification to occur, whereas lower Ksat values allow denitrification to occur. Areas with higher permeability transport greater NO3-N fluxes to ground and surface waters. When the distribution of Cl− was examined by the model, Ksat and ground elevation had the most explanatory power but Ksat was not significant pointing to dilution having an effect. Areas with low NO3 concentration and unaffected Cl− concentration points to denitrification, low NO3 concentration and low Cl− chloride concentration points to dilution and combining these findings allows areas of denitrification and dilution to be inferred. The effect of denitrification is further supported as mean groundwater NO3-N was significantly (P < 0.05) related to groundwater N2/Ar ratio, redox potential (Eh), dissolved O2 and N2 and was close to being significant with N2O (P = 0.08). Calculating contaminant mass flux across more than one control plane is a useful tool to monitor natural attenuation. This tool allows the identification of hot spot areas where intervention other than natural attenuation may be needed to protect receptors.