• The Agrodiversity Experiment: three years of data from a multisite study in intensively managed grasslands

      Kirwan, Laura; Connolly, John; Brophy, C.; Baadshaug, Ole; Belanger, Gilles; Black, Alistair D; Camus, Tim; Collins, Rosemary; Cop, Jure; Delgado, Ignacio; et al. (Ecological Society of America, 11/06/2014)
      Intensively managed grasslands are globally prominent ecosystems. We investigated whether experimental increases in plant diversity in intensively managed grassland communities can increase their resource use efficiency. This work consisted of a coordinated, continental-scale 33-site experiment. The core design was 30 plots, representing 15 grassland communities at two seeding densities. The 15 communities were comprised of four monocultures (two grasses and two legumes) and 11 four-species mixtures that varied in the relative abundance of the four species at sowing. There were 1028 plots in the core experiment, with another 572 plots sown for additional treatments. Sites agreed a protocol and employed the same experimental methods with certain plot management factors, such as seeding rates and number of cuts, determined by local practice. The four species used at a site depended on geographical location, but the species were chosen according to four functional traits: a fast-establishing grass, a slow-establishing persistent grass, a fast-establishing legume, and a slow-establishing persistent legume. As the objective was to maximize yield for intensive grassland production, the species chosen were all high-yielding agronomic species. The data set contains species-specific biomass measurements (yield per species and of weeds) for all harvests for up to four years at 33 sites. Samples of harvested vegetation were also analyzed for forage quality at 26 sites. Analyses showed that the yield of the mixtures exceeded that of the average monoculture in >97% of comparisons. Mixture biomass also exceeded that of the best monoculture (transgressive overyielding) at about 60% of sites. There was also a positive relationship between the diversity of the communities and aboveground biomass that was consistent across sites and persisted for three years. Weed invasion in mixtures was very much less than that in monocultures. These data should be of interest to ecologists studying relationships between diversity and ecosystem function and to agronomists interested in sustainable intensification. The large spatial scale of the sites provides opportunity for analyses across spatial (and temporal) scales. The database can also complement existing databases and meta-analyses on biodiversity–ecosystem function relationships in natural communities by focusing on those same relationships within intensively managed agricultural grasslands.
    • A comparison of husked and naked oats under Irish conditions

      Hackett, Richard (Teagasc (Agriculture and Food Development Authority), Ireland, 2018-02-22)
      During the harvesting of husked oats (Avena sativa L.), the kernel remains tightly enclosed by a lignified lemma and palea, collectively termed the husk or hull. In naked oats, which are the same species as husked oats, the lemma is much less lignified and the kernel threshes free during harvesting. The absence of the largely indigestible husk increases the nutritive value of naked oats compared to that of husked oats, particularly for non-ruminants and poultry. There is little information regarding the potential of naked oats as an arable crop in Ireland. The objective of this study was to determine the productivity of naked oats under Irish conditions. Field experiments were carried out in the south east of Ireland to compare the grain yield and grain quality of both autumn-sown and spring-sown naked and husked oat cultivars. Grain yield of naked oat cultivars was significantly lower than that of husked oat cultivars, irrespective of whether they were autumn sown or spring sown. However, when the kernel yield of husked oat cultivars was estimated, differences in yield between the two types were much smaller, and in some cases, kernel yield of naked oat cultivars exceeded that of husked oat cultivars. Grain quality, as indicated by hectolitre weight and grain N concentration, was generally greater for naked oat cultivars than for husked oat cultivars. It is concluded that under Irish conditions, naked oats have the potential to produce kernel yields equivalent to husked oats. The grain produced is of high quality and may be particularly suited for the nutrition of non-ruminants.
    • Nitrogen fertiliser interactions with urine deposit affect nitrous oxide emissions from grazed grasslands

      Maire, J.; Krol, Dominika; Pasquier, D.; Cowan, N.; Skiba, U.; Rees, R.M.; Reay, D.; Lanigan, Gary; Richards, Karl J.; Teagasc Walsh Fellowship Programme; et al. (Elsevier, 2019-12-06)
      Cattle excreta deposited on grazed pastures are responsible for one fifth of the global anthropogenic nitrous oxide (N2O) emissions. One of the key nitrogen (N) sources is urine deposited from grazing animals, which contributes to very large N loadings within small areas. The main objective of this plot study was to establish whether the application of N fertiliser and urine deposit from dairy cows synergistically interacts and thereby increases N2O emissions, and how such interaction is influenced by the timing of application. The combined application of fertiliser (calcium ammonium nitrate) and urine significantly increased the cumulative N2O emissions as well as the N2O emission factor (EF) from 0.35 to 0.74 % in spring and from 0.26 to 0.52 % in summer. By contrast, EFs were lower when only fertiliser (0.31 % in spring, 0.07 % in summer) or urine was applied (0.33 % in spring, 0.28 % in summer). In autumn, N2O emissions were larger than in other seasons and the emissions from the combined application were not statistically different to those from either the separately applied urine or N fertiliser (EF ranging from 0.72 to 0.83, p-value < 0.05). The absence of significant synergistic effect could be explained by weather conditions, particularly rainfall during the three days prior to and after application in autumn. This study implies that the interactive effects of N fertilisation and urine deposit, as well as the timing of the application on N2O emission need to be taken into account in greenhouse gas emission inventories.
    • Yield losses caused by late blight (Phytophthora infestans (Mont.) de Bary) in potato crops in Ireland

      Dowley, L.J.; Grant, Jim; Griffin, Denis (Teagasc, Oak Park, Carlow, Ireland, 2008)
      Field experiments, using foliage blight susceptible cultivars, were conducted at Oak Park, Carlow from 1983 to 2007 to determine the loss in potato production caused by crop infection with Phytophthora infestans. In each of the 25 years an untreated control was compared with protectant and with systemic fungicide programmes to determine the effect of late blight on the defoliation percentage at the end of the season, the area under the disease progress curve, marketable tuber yield, total tuber yield and yield of blighted tubers. The earliest date of first recorded late blight was 22 June and the latest was 15 September, but in 15 of the 25 years, blight was first recorded between 17 July and 13 August. Disease reached epidemic proportions in all but 4 of the years. Yields varied considerably among years. The mean loss in total yield from not using a fungicide was 10.1 t/ha. Differences in yield were significant across the 25 seasons. No overall increase in aggressiveness of the pathogen could be detected over the 25-year period.