• Ammonia emissions from urea, stabilized urea and calcium ammonium nitrate: insights into loss abatement in temperate grassland

      Forrestal, Patrick J.; Harty, Mary A.; Carolan, Rachael; Lanigan, Gary; Watson, C. J.; Laughlin, Ronald J.; McNeill, Gavin; Chambers, B. J.; Richards, Karl G.; Department of Agriculture, Food and the Marine, Ireland; et al. (Wiley, 17/11/2015)
      Fertilizer nitrogen (N) contributes to ammonia (NH3) emissions, which European Union member states have committed to reduce. This study focused on evaluating NH3-N loss from a suite of N fertilizers over multiple applications, and gained insights into the temporal and seasonal patterns of NH3-N loss from urea in Irish temperate grassland using wind tunnels. The fertilizers evaluated were calcium ammonium nitrate (CAN), urea and urea with the N stabilizers N-(n-butyl) thiophosphoric triamide (NBPT), dicyandiamide (DCD), DCD+NBPT and a maleic and itaconic acid polymer (MIP). 200 (and 400 for urea only) kg N/ha/yr was applied in five equal applications over the growing season at two grassland sites (one for MIP). Mean NH3-N losses from CAN were 85% lower than urea and had highly variable loss (range 45% points). The effect of DCD on NH3 emissions was variable. MIP did not decrease NH3-N loss, but NBPT caused a 78.5% reduction and, when combined with DCD, a 74% reduction compared with urea alone. Mean spring and summer losses from urea were similar, although spring losses were more variable with both the lowest and highest losses. Maximum NH3-N loss usually occurred on the second day after application. These data highlight the potential of stabilized urea to alter urea NH3-N loss outcomes in temperate grassland, the need for caution when using season as a loss risk guide and that urea hydrolysis in temperate grassland initiates quickly. Micrometeorological measurements focused specifically on urea are needed to determine absolute NH3-N loss levels in Irish temperate grassland.
    • A field-based comparison of ammonia emissions from six Irish soil types following urea fertiliser application

      Burchill, William; Lanigan, Gary; Forrestal, Patrick J.; Reville, F.; Misselbrook, T.; Richards, Karl G.; Department of Agriculture, Food and the Marine, Ireland; RSF 13/S/430 (Teagasc (Agriculture and Food Development Authority), Ireland, 30/12/2016)
      Ammonia (NH3) emissions from a range of soil types have been found to differ under laboratory conditions. However, there is lack of studies comparing NH3 emissions from different soil types under field conditions. The objective was to compare NH3 emissions from six different soil types under similar environmental conditions in the field following urea fertiliser application. The study was conducted on a lysimeter unit and NH3 emissions were measured, using wind tunnels, from six different soil types with varying soil characteristics following urea fertiliser application (80 kg N/ha). On average, 17.6% (% total N applied) was volatilised, and there was no significant difference in NH3 emissions across all soil types. Soil variables, including pH, cation exchange capacity and volumetric moisture, were not able to account for the variation in emissions. Further field studies are required to improve the urea-NH3 emission factor used for Ireland’s NH3 inventory.