Now showing items 1-20 of 322

    • Potatoes and livelihoods in Chencha, southern Ethiopia

      Tadesse, Yenenesh; Almekinders, Conny J.M.; Schulte, Rogier P.O.; Struik, Paul C.; Wageningen University and Research; Vita (Irish Aid); Teagasc Walsh Fellowship Programme (Elsevier BV, 2018-06-18)
      Potato is highly productive crop and can provide a cheap and nutritionally-rich staple food. Its potential as a cash generator and source of food is much under-utilized in many emerging economies. In this paper we study the impact of an intervention that introduced improved potato technologies in Chencha, Ethiopia on the livelihoods of smallholder farmers. We collected information through in-depth interviews in order to explore possible pathways of impact on farmers’ livelihoods; and used this information as the basis for designing a household survey. The results show changes in agronomic practices and consumption; these changes were most pronounced among wealthy farmers who participated in the intervention. Farmers used the additional income from potato in different ways: wealthier farmers improved their houses and increased their livestock, whereas poor farmers mainly invested in furniture, cooking utensils, tools and in developing small businesses like selling and buying cereals, milk and weaving products in the local markets. Some wealthy farmers, who did not participate in the project, also derived some indirect benefits from the intervention. This underscores: i) interventions that promote uniform farming technologies in themselves are not always sufficient to improve the livelihoods of poor farmers, and ii) the need to broaden the scope of interventions so as to take into account the resources available to farmers in different wealth categories, and the diversity of strategies that they employ for improving their livelihoods. Our approach allows to understand and describe the different developmental effects of a single technological intervention on the different aspects of farmers’ livelihoods.
    • Assessing the role of artificially drained agricultural land for climate change mitigation in Ireland

      Paul, Carsten; Fealy, Reamonn; Fenton, Owen; Lanigan, Gary; O'Sullivan, Lilian; Schulte, Rogier P.; Irish Dairy Research Fund; Teagasc Greenhouse Gas Working Group; Department of Agriculture, Food and the Marine (Elsevier, 2017-12-19)
      In 2014 temperate zone emission factor revisions were published in the IPCC Wetlands Supplement. Default values for direct CO2 emissions of artificially drained organic soils were increased by a factor of 1.6 for cropland sites and by factors ranging from 14 to 24 for grassland sites. This highlights the role of drained organic soils as emission hotspots and makes their rewetting more attractive as climate change mitigation measures. Drainage emissions of humic soils are lower on a per hectare basis and not covered by IPCC default values. However, drainage of great areas can turn them into nationally relevant emission sources. National policy making that recognizes the importance of preserving organic and humic soils’ carbon stock requires data that is not readily available. Taking Ireland as a case study, this article demonstrates how a dataset of policy relevant information can be generated. Total area of histic and humic soils drained for agriculture, resulting greenhouse gas emissions and climate change mitigation potential were assessed. For emissions from histic soils, calculations were based on IPCC emission factors, for humic soils, a modified version of the ECOSSE model was used. Results indicated 370,000 ha of histic and 426,000 ha of humic soils under drained agricultural land use in Ireland (8% and 9% of total farmed area). Calculated annual drainage emissions were 8.7 Tg CO2e from histic and 1.8 Tg CO2e from humic soils (equal to 56% of Ireland’s agricultural emissions in 2014, excluding emissions from land use). If half the area of drained histic soils was rewetted, annual saving would amount to 3.2 Tg CO2e. If on half of the deep drained, nutrient rich grasslands drainage spacing was decreased to control the average water table at −25 cm or higher, annual savings would amount to 0.4 Tg CO2e.
    • Genotyping by sequencing provides new insights into the diversity of Napier grass (Cenchrus purpureus) and reveals variation in genome-wide LD patterns between collections

      Muktar, Meki S.; Teshome, Abel; Hanson, Jean; Negawo, Alemayehu T.; Habte, Ermias; Domelevo Entfellner, Jean-Baka; Lee, Ki-Won; Jones, Chris S.; Rural Development Administration of the Republic of Korea; Germany-GIZ-Deutsche Gesellschaft für Internationale Zusammenarbeit; et al. (Springer Nature, 2019-05-06)
      Napier grass is an important tropical forage-grass and of growing potential as an energy crop. One-hundred-five Napier grass accessions, encompassing two independent collections, were subjected to genotyping by sequencing which generated a set of high-density genome-wide markers together with short sequence reads. The reads, averaging 54 nucleotides, were mapped to the pearl millet genome and the closest genes and annotation information were used to select candidate genes linked to key forage traits. 980 highly polymorphic SNP markers, distributed across the genome, were used to assess population structure and diversity with seven-subgroups identified. A few representative accessions were selected with the objective of distributing subsets of a manageable size for further evaluation. Genome-wide linkage disequilibrium (LD) analyses revealed a fast LD-decay, on average 2.54 kbp, in the combined population with a slower LD-decay in the ILRI collection compared with the EMBRAPA collection, the significance of which is discussed. This initiative generated high-density markers with a good distribution across the genome. The diversity analysis revealed the existence of a substantial amount of variation in the ILRI collection and identified some unique materials from the EMBRAPA collection, demonstrating the potential of the overall population for further genetic and marker-trait-association studies.
    • Clay illuviation provides a long-term sink for C sequestration in subsoils

      Torres-Sallan, Gemma; Schulte, Rogier P.; Lanigan, Gary; Byrne, Kenneth; Reidy, Brian; Simó, Iolanda; Six, Johan; Creamer, Rachel; Irish Soil Information System project; Teagasc; et al. (Springer Nature, 2017-04-06)
      Soil plays a key role in the global carbon (C) cycle. Most current assessments of SOC stocks and the guidelines given by Intergovernmental Panel on Climate Change (IPCC) focus on the top 30 cm of soil. Our research shows that, when considering only total quantities, most of the SOC stocks are found in this top layer. However, not all forms of SOC are equally valuable as long-term stable stores of carbon: the majority of SOC is available for mineralisation and can potentially be re-emitted to the atmosphere. SOC associated with micro-aggregates and silt plus clay fractions is more stable and therefore represents a long-term carbon store. Our research shows that most of this stable carbon is located at depths below 30 cm (42% of subsoil SOC is located in microaggregates and silt and clay, compared to 16% in the topsoil), specifically in soils that are subject to clay illuviation. This has implications for land management decisions in temperate grassland regions, defining the trade-offs between primary productivity and C emissions in clay-illuviated soils, as a result of drainage. Therefore, climate smart land management should consider the balance between SOC stabilisation in topsoils for productivity versus sequestration in subsoils for climate mitigation.
    • Variable response to phosphorus mitigation measures across the nutrient transfer continuum in a dairy grassland catchment

      Murphy, Paul N. C.; Mellander, Per-Erik; Melland, A. R.; Buckley, Cathal; Shore, Mairead; Shortle, Ger; Wall, David; Treacy, Mark; Shine, Oliver; Mechan, Sarah; et al. (Elsevier, 2015-04-20)
      Phosphorus (P) loss from soils to water can be a major pressure on freshwater quality and dairy farming, with higher animal stocking rates, may lead to potentially greater nutrient source pressures. In many countries with intensive agriculture, regulation of P management aims to minimise these losses. This study examined the P transfer continuum, from source to impact, in a dairy-dominated, highly stocked, grassland catchment with free-draining soils over three years. The aim was to measure the effects of P source management and regulation on P transfer across the nutrient transfer continuum and subsequent water quality and agro-economic impacts. Reduced P source pressure was indicated by: (a) lower average farm-gate P balances (2.4 kg ha−1 yr−1), higher P use efficiencies (89%) and lower inorganic fertilizer P use (5.2 kg ha−1 yr−1) relative to previous studies; (b) almost no recorded P application during the winter closed period, when applications were prohibited, to avoid incidental transfers; and (c) decreased proportions of soils with excessive P concentrations (32–24%). Concurrently, production and profitability remained comparable with the top 10% of dairy farmers nationally with milk outputs of 14,585 l ha−1, and gross margins of € 3130 ha−1. Whilst there was some indication of a response in P delivery in surface water with declines in quick flow and interflow pathway P concentrations during the winter closed period for P application, delayed baseflows in the wetter third year resulted in elevated P concentrations for long durations and there were no clear trends of improving stream biological quality. This suggests a variable response to policy measures between P source pressure and delivery/impact where the strength of any observable trend is greater closer to the source end of the nutrient transfer continuum and a time lag occurs at the other end. Policy monitoring and assessment efforts will need to be cognisant of this.
    • Chemical composition of lamina and sheath of Lolium perenne as affected by herbage management

      Hoekstra, Nyncke J.; Struik, Paul C.; Lantinga, E. A.; Schulte, Rogier P.; Teagasc Walsh Fellowship Programme (Elsevier, 2009-08-20)
      The quality of grass in terms of form and relative amounts of energy and protein affects both animal production per unit of intake and nitrogen (N) utilization. Quality can be manipulated by herbage management and choice of cultivar. The effects of N application rate (0, 90 or 390 kg N ha−1 year−1), duration of regrowth period (2–3, 4–5, or 6–7 weeks), and cutting height (8 or 12 cm) on the mass fractions of nitrogen (N), water-soluble carbohydrates (WSC), neutral detergent fibre (NDF), acid detergent fibre (ADF), lignin and ash in lamina and sheath material of a high-sugar (Aberdart) and a low-sugar (Respect) perennial ryegrass (Lolium perenne) cultivar, were studied in a factorial field experiment during four seasons in 2002 and 2003. Expressing NDF and ADF mass fractions in g per kg WSC-free dry matter (DM) increased the consistency of treatment effects. The high-sugar cultivar had generally higher WSC mass fractions than the low-sugar cultivar, especially during the late season. Moreover, the relative difference in WSC mass fraction between the two cultivars tended to be higher for the lamina material than for the sheath material, which suggests that the high-sugar trait may be more important under grazing conditions, when lamina forms the bulk of the intake, than under mowing regimes. Longer regrowth periods and lower N application rates increased WSC mass fractions and decreased N mass fractions; interactions between regrowth period and N application rate were highly significant. The mass fractions of NDF and ADF were much less influenced. The NDF mass fraction in terms of g per kg WSC-free DM tended to be higher at lower N application rates and at longer regrowth periods. The effect of cutting height on herbage chemical composition was unclear. In conclusion, high-sugar cultivars, N application rate and length of the regrowth period are important tools for manipulating herbage quality.
    • An Analysis of Abatement Potential of Greenhouse Gas Emissions in Irish Agriculture 2021-2030

      Lanigan, Gary; Donnellan, Trevor; Hanrahan, Kevin; Carsten, Paul; Shalloo, Laurence; Krol, Dominika; Forrestal, Patrick; Farrelly, Niall; O’Brien, Donal; Ryan, Mary; et al. (Teagasc, 2018-06-10)
      This report has been prepared by the Teagasc Working Group on GHG Emissions, which brings together and integrates the extensive and diverse range of organisational expertise on agricultural greenhouse gases. The previous Teagasc GHG MACC was published in 2012 in response to both the EU Climate and Energy Package and related Effort Sharing Decision and in the context of the establishment of the Food Harvest 2020 production targets.
    • Effects of ten years organic and conventional farming on early seedling traits of evolving winter wheat composite cross populations

      Bhaskar A.V., Vijaya; Baresel, Jörg Peter; Weedon, Odette; Finckh, Maria R.; German BMBF; European Union; 031A350C; 727217 (Springer Nature, 2019-06-21)
      Early vigour traits of wheat composite cross populations (CCPs) based on high yielding (Y) or high quality (Q) or Y*Q varietal intercross evolving under organic or conventional conditions in parallel populations were studied hydroponically. To eliminate storage and year effects, frozen F6, F10, F11 and F15 seeds were multiplied in one field, resulting in the respective Fx.1 generations. This eliminated generation and growing system effects on seed size for the F6.1 F10.1 and F15.1. Due to a severe winter kill affecting the F11, the generation effect persisted, leading to larger seeds and markedly different seedling traits in the F11.1 compared to the F10.1 and F15.1. Seedling traits were similar among parallel populations. Shoot length and weight increased in both systems until the F11.1 across farming systems and remained constant thereafter. Over time, seminal root length and root weight of organic CCPs increased and total- and specific- root length decreased significantly compared to the conventional CCPs. Rooting patterns under organic conditions suggests better ability to reach deeper soil nutrients. In both systems, Q and YQ CCPs were more vigorous than Y CCPs, confirming genetic differences among populations. Overall, heterogeneous populations appear very plastic and selection pressure was stronger in organic systems.
    • Exploring the potential of grass feedstock from marginal land in Ireland: Does marginal mean lower yield?

      Meehan, Peter; Burke, Brendan; Doyle, Deirdre; Barth, Susanne; Finnan, John; European Union; KBBE-2011-5-289461 (Elsevier, 2017-11-02)
      The production of biomass feedstock from marginal land has attracted much attention as a means of avoiding conflict between the production of food and fuel. Yield potentials from marginal lands have generally not been quantified although it is generally assumed that lower biomass yields can be expected from marginal lands. A three year study was conducted in Ireland in order to determine if grass yields of perennial rhizomatous grasses (cocksfoot, tall fescue, reed canary grass, festulolium) for anaerobic digestion from three marginal land sites (very wet site, very dry site, site prone to flooding) could match yields from better soils. Randomised complete block designs were established on each site in 2012 with two varieties of each grass species as treatments. Three grass harvests were taken from each site in 2013 and in 2014. There was no significant difference between yields from the control site and those from the very dry site and the site prone to flooding. Biomass yields from the very wet site were 85% of those from the control site. Highest yields were obtained from festulolium which were significantly higher than yields from perennial ryegrass. An energy analysis showed that maximising the production of grass from low lying mineral marginal grassland in Ireland could provide enough energy to meet the energy requirements of both the private car fleet and the heavy goods vehicle fleet while avoiding conflict with food production which could be concentrated on conventional land.
    • The Impact of Policy Instruments on Soil Multifunctionality in the European Union

      Vrebos, Dirk; Bampa, Francesca; Creamer, Rachel E.; Gardi, Ciro; Ghaley, Bhim Bahadur; Jones, Arwyn; Rutgers, Michiel; Sandén, Taru; Staes, Jan; Meire, Patrick; et al. (MDPI, 2017-03-09)
      Agricultural ecosystems provide a range of benefits that are vital to human well-being. These benefits are dependent on several soil functions that are affected in different ways by legislation from the European Union, national, and regional levels. We evaluated current European Union soil-related legislation and examples of regional legislation with regard to direct and indirect impacts on five soil functions: the production of food, fiber, and fuel; water purification and regulation; carbon sequestration and climate regulation; habitat for biodiversity provisioning; and the recycling of nutrients/agro-chemicals. Our results illustrate the diversity of existing policies and the complex interactions present between different spatial and temporal scales. The impact of most policies, positive or negative, on a soil function is usually not established, but depends on how the policy is implemented by local authorities and the farmers. This makes it difficult to estimate the overall state and trends of the different soil functions in agricultural ecosystems. To implement functional management and sustainable use of the different soil functions in agricultural ecosystems, more knowledge is needed on the policy interactions as well as on the impact of management options on the different soil functions.
    • Transcriptomic response of maize primary roots to low temperatures at seedling emergence

      Di Fenza, Mauro; Hogg, Bridget; Grant, Jim; Barth, Susanne; Department of Agriculture, Food and the Marine; RSF 07 501 (PeerJ, 2017-01-05)
      Background Maize (Zea mays) is a C4 tropical cereal and its adaptation to temperate climates can be problematic due to low soil temperatures at early stages of establishment. Methods In the current study we have firstly investigated the physiological response of twelve maize varieties, from a chilling condition adapted gene pool, to sub-optimal growth temperature during seedling emergence. To identify transcriptomic markers of cold tolerance in already adapted maize genotypes, temperature conditions were set below the optimal growth range in both control and low temperature groups. The conditions were as follows; control (18 °C for 16 h and 12 °C for 8 h) and low temperature (12 °C for 16 h and 6 °C for 8 h). Four genotypes were identified from the condition adapted gene pool with significant contrasting chilling tolerance. Results Picker and PR39B29 were the more cold-tolerant lines and Fergus and Codisco were the less cold-tolerant lines. These four varieties were subjected to microarray analysis to identify differentially expressed genes under chilling conditions. Exposure to low temperature during establishment in the maize varieties Picker, PR39B29, Fergus and Codisco, was reflected at the transcriptomic level in the varieties Picker and PR39B29. No significant changes in expression were observed in Fergus and Codisco following chilling stress. A total number of 64 genes were differentially expressed in the two chilling tolerant varieties. These two varieties exhibited contrasting transcriptomic profiles, in which only four genes overlapped. Discussion We observed that maize varieties possessing an enhanced root growth ratio under low temperature were more tolerant, which could be an early and inexpensive measure for germplasm screening under controlled conditions. We have identified novel cold inducible genes in an already adapted maize breeding gene pool. This illustrates that further varietal selection for enhanced chilling tolerance is possible in an already preselected gene pool.
    • Plastid genome sequencing reveals biogeographical structure and extensive population genetic variation in wild populations of Phalaris arundinacea L. in north‐western Europe

      Perdereau, Aude; Klass, Manfred; Barth, Susanne; Hodkinson, Trevor R.; European Union; 289461 (Wiley, 2016-03-31)
      New and comprehensive collections of the perennial rhizomatous reed canary grass (Phalaris arundinacea) were made in NW Europe along north‐to‐south and east‐to‐west clines from Denmark, Germany, Ireland, Poland, Sweden and the United Kingdom. Rhizome, seed and leaf samples were taken for analysis and genetic resource conservation. A subsample covering the geographical range was characterized using plastid genome sequencing and SNP discovery generated using a long‐read PCR and MiSeq sequencing approach. Samples were also subject to flow cytometry and all found to be tetraploid. New sequences were assembled against a Lolium perenne (perennial ryegrass) reference genome, and an average of approximately 60% of each genome was aligned (81 064 bp). Genetic variation was high among the 48 sequenced genotypes with a total of 1793 SNPs, equating to 23 SNPs per kbp. SNPs were subject to principal coordinate and Structure analyses to detect population genetic groupings and to examine phylogeographical pattern. Results indicate substantial genetic variation and population genetic structuring of this allogamous species at a broad geographical scale in NW Europe with plastid genetic diversity organized more across an east‐to‐west than a north‐to‐south cline.
    • Future global pig production systems according to the Shared Socioeconomic Pathways

      Lassaletta, Luis; Estellés, Fernando; Beusen, Arthur; Bouwman, Lex; Calvet, Salvador; van Grinsven, Hans J.M.; Doelman, Jonathan; Stehfest, Elke; Uwizeye, Aimable; Westhoek, Henk; et al. (Elsevier, 2019-02-08)
      Global pork production has increased fourfold over the last 50 years and is expected to continue growing during the next three decades. This may have considerable implications for feed use, land requirements, and nitrogen emissions. To analyze the development of the pig production sector at the scale of world regions, we developed the IMAGE-Pig model to describe changes in feed demand, feed conversion ratios (FCRs), nitrogen use efficiency (NUE) and nitrogen excretion for backyard, intermediate and intensive systems during the past few decades as a basis to explore future scenarios. For each region and production system, total production, productive characteristics and dietary compositions were defined for the 1970–2005 period. The results show that due to the growing pork production total feed demand has increased by a factor of two (from 229 to 471Tg DM). This is despite the improvement of FCRs during the 1970–2005 period, which has reduced the feed use per kg of product. The increase of nitrogen use efficiency was slower than the improvement of FCRs due to increasing protein content in the feed rations. As a result, total N excretion increased by more than a factor of two in the 1970–2005 period (from 4.6 to 11.1 Tg N/year). For the period up to 2050, the Shared Socio-economic Pathways (SSPs) provide information on levels of human consumption, technical development and environmental awareness. The sustainability of pig production systems for the coming decades will be based not only on the expected efficiency improvements at the level of animal breeds, but also on four additional pillars: (i) use of alternative feed sources not competing with human food, (ii) reduction of the crude protein content in rations, (iii) the proper use of slurries as fertilizers through coupling of crop and livestock production and (iv) moderation of the human pork consumption.
    • Real-time forecasting of pesticide concentrations in soil

      McGrath, Gavan; Rao, P. Suresh C.; Mellander, Per-Erik; Kennedy, Ivan; Rose, Michael; van Zwieten, Lukas; Grains Research and Development Corporation grant; Lee A. Reith Endowment in the Lyles School of Civil Engineering at Purdue University; Environmental Protection Agency; DAN00180; et al. (Elsevier, 2019-01-31)
      Forecasting pesticide residues in soils in real time is essential for agronomic purposes, to manage phytotoxic effects, and in catchments to manage surface and ground water quality. This has not been possible in the past due to both modelling and measurement constraints. Here, the analytical transient probability distribution (pdf) of pesticide concentrations is derived. The pdf results from the random ways in which rain events occur after pesticide application. First-order degradation kinetics and linear equilibrium sorption are assumed. The analytical pdfs allow understanding of the relative contributions that climate (mean storm depth and mean rainfall event frequency) and chemical (sorption and degradation) properties have on the variability of soil concentrations into the future. We demonstrated the two uncertain reaction parameters can be constrained using Bayesian methods. An approach to a Bayesian informed forecast is then presented. With the use of new rapid tests capable of providing quantitative measurements of soil concentrations in the field, real-time forecasting of future pesticide concentrations now looks possible for the first time. Such an approach offers new means to manage crops, soils and water quality, and may be extended to other classes of pesticides for ecological risk assessment purposes.
    • CropQuest: Minor Crops Report

      Zahoor, Faisal; Forristal, Dermot; Gillespie, Gary; Department of Agriculture, Food and the Marine; 11/S/119 (Teagasc, 2015)
      In this report as part of the DAFM funded CROPQUEST desk study, a brief description outlining the characteristics of a range of minor crops, their uses/markets and their potential, if known, for production in Ireland is presented. The crops include: Amaranth, Borage, Calendula, Camelina, Crambe, Echium, Flax / Linseed, Hemp, Hops, Lentils, Lupins, Oats, Poppy, Quinoa
    • An integrated assessment of nitrogen source, transformation and fate within an intensive dairy system to inform management change

      Clagnan, Elisa; Thornton, Steven F; Rolfe, Stephen A.; Wells, Naomi; Knoeller, Kay; Murphy, John; Tuohy, Patrick; Daly, Karen; Healy, Mark G.; Ezzati, Golnaz; et al. (PLoS ONE, 2019-07-23)
      From an environmental perspective optimised dairy systems, which follow current regulations, still have low nitrogen (N) use efficiency, high N surplus (kg N ha-1) and enable ad-hoc delivery of direct and indirect reactive N losses to water and the atmosphere. The objective of the present study was to divide an intensive dairy farm into N attenuation capacity areas based on this ad-hoc delivery. Historical and current spatial and temporal multi-level datasets (stable isotope and dissolved gas) were combined and interpreted. Results showed that the farm had four distinct attenuation areas: high N attenuation: characterised by ammonium-N (NH4+-N) below 0.23 mg NH4+-N l-1 and nitrate (NO3--N) below 5.65 mg NO3--N l-1 in surface, drainage and groundwater, located on imperfectly to moderately-well drained soils with high denitrification potential and low nitrous oxide (N2O) emissions (av. 0.0032 mg N2O-N l-1); moderate N attenuation: characterised by low NO3--N concentration in drainage water but high N2O production (0.0317 mg N2O-N l-1) and denitrification potential lower than group 1 (av. δ15N-NO3-: 16.4‰, av. δ18O-NO3-: 9.2‰), on well to moderately drained soils; low N attenuation—area 1: characterised by high NO3--N (av. 6.90 mg NO3--N l-1) in drainage water from well to moderately-well drained soils, with low denitrification potential (av. δ15N-NO3-: 9.5‰, av. δ18O-NO3-: 5.9‰) and high N2O emissions (0.0319 mg N2O l-1); and low N attenuation—area 2: characterised by high NH4+-N (av. 3.93 mg NH4+-N l-1 and high N2O emissions (av. 0.0521 mg N2O l-1) from well to imperfectly drained soil. N loads on site should be moved away from low attenuation areas and emissions to air and water should be assessed.
    • The influence of aggregate size fraction and horizon position on microbial community composition

      Fox, Aaron; Ikoyi, Israel; Torres-Sallan, Gemma; Lanigan, Gary; Schmalenberger, Achim; Wakelin, Steve; Creamer, Rachel; Teagasc Walsh Fellowship Programme; Environmental Protection Agency; Agricultural GHG Research Initiative for Ireland; et al. (Elsevier, 2018-03-09)
      The influence of horizon position and aggregate size on bacterial and fungal community composition was determined. From nine sites, soils were collected from the top three horizon positions (H1, H2 and H3). Physical fractionation separated samples into large macroaggregate (LM, >2000 μm), macroaggregate (MAC, >250 μm), microaggregate (MIC, <250 μm), and silt and clay (SC, 53 μm) fractions. In all samples, the structure of the bacterial and fungal community composition was assessed via restriction fragment length polymorphism (T-RFLP), and for the four aggregate sizes from the top two horizons positions an in-depth analysis of the bacterial community was conducted using next generation sequencing (NGS). Bacterial and fungal communities both differed between aggregate-sizes. Changes in the composition of the bacterial and fungal communities also occurred among horizon positions, with a significant interaction between aggregate size and horizon position evident for the bacterial community. Using NGS, it was shown that aggregate-size had a significant effect on the bacterial community in both horizon positions at both the phyla and family taxonomic levels. MAC and MIC significantly differed in the % relative abundance of bacterial groups, potentially indicating differing predation pressures. These results indicate that both horizon position and aggregate size support distinct microbial communities. Understanding these parameters is critical in our comprehension of the patterns of microbial diversity in soil.
    • The ALFAM2 database on ammonia emission from field-applied manure: Description and illustrative analysis

      Hafner, Sasha D.; Pacholski, Andreas; Bittman, Shabtai; Burchill, William; Bussink, Wim; Chantigny, Martin; Carozzi, Marco; Génermont, Sophie; Häni, Christoph; Hansen, Martin N.; et al. (Elsevier, 2017-12-27)
      Ammonia (NH3) emission from animal manure contributes to air pollution and ecosystem degradation, and the loss of reactive nitrogen (N) from agricultural systems. Estimates of NH3 emission are necessary for national inventories and nutrient management, and NH3 emission from field-applied manure has been measured in many studies over the past few decades. In this work, we facilitate the use of these data by collecting and organizing them in the ALFAM2 database. In this paper we describe the development of the database and summarise its contents, quantify effects of application methods and other variables on emission using a data subset, and discuss challenges for data analysis and model development. The database contains measurements of emission, manure and soil properties, weather, application technique, and other variables for 1895 plots from 22 research institutes in 12 countries. Data on five manure types (cattle, pig, mink, poultry, mixed, as well as sludge and “other”) applied to three types of crops (grass, small grains, maize, as well as stubble and bare soil) are included. Application methods represented in the database include broadcast, trailing hose, trailing shoe (narrow band application), and open slot injection. Cattle manure application to grassland was the most common combination, and analysis of this subset (with dry matter (DM) limited to <15%) was carried out using mixed- and fixed-effects models in order to quantify effects of management and environment on ammonia emission, and to highlight challenges for use of the database. Measured emission in this subset ranged from <1% to 130% of applied ammonia after 48 h. Results showed clear, albeit variable, reductions in NH3 emission due to trailing hose, trailing shoe, and open slot injection of slurry compared to broadcast application. There was evidence of positive effects of air temperature and wind speed on NH3 emission, and limited evidence of effects of slurry DM. However, random-effects coefficients for differences among research institutes were among the largest model coefficients, and showed a deviation from the mean response by more than 100% in some cases. The source of these institute differences could not be determined with certainty, but there is some evidence that they are related to differences in soils, or differences in application or measurement methods. The ALFAM2 database should be useful for development and evaluation of both emission factors and emission models, but users need to recognize the limitations caused by confounding variables, imbalance in the dataset, and dependence among observations from the same institute. Variation among measurements and in reported variables highlights the importance of international agreement on how NH3 emission should be measured, along with necessary types of supporting data and standard protocols for their measurement. Both are needed in order to produce more accurate and useful ammonia emission measurements. Expansion of the ALFAM2 database will continue, and readers are invited to contact the corresponding author for information on data submission. The latest version of the database is available at
    • Incidental nutrient transfers: Assessing critical times in agricultural catchments using high-resolution data

      Shore, Mairead; Jordan, Philip; Melland, Alice R.; Mellander, Per-Erik; McDonald, Noeleen T.; Shortle, Ger; Department of Agriculture, Food and the Marine (Elsevier, 2016-03-22)
      Managing incidental losses associated with liquid slurry applications during closed periods has significant cost and policy implications and the environmental data required to review such a measure are difficult to capture due to storm dependencies. Over four years (2010–2014) in five intensive agricultural catchments, this study used high-resolution total and total reactive phosphorus (TP and TRP), total oxidised nitrogen (TON) and suspended sediment (SS) concentrations with river discharge data to investigate the magnitude and timing of nutrient losses. A large dataset of storm events (defined as 90th percentile discharges), and associated flow-weighted mean (FWM) nutrient concentrations and TP/SS ratios, was used to indicate when losses were indicative of residual or incidental nutrient transfers. The beginning of the slurry closed period was reflective of incidental and residual transfers with high storm FWM P (TP and TRP) concentrations, with some catchments also showing elevated storm TP:SS ratios. This pattern diminished at the end of the closed period in all catchments. Total oxidised N behaved similarly to P during storms in the poorly drained catchments and revealed a long lag time in other catchments. Low storm FWM P concentrations and TP:SS ratios during the weeks following the closed period suggests that nutrients either weren't applied during this time (best times chosen) or that they were applied to less risky areas (best places chosen). For other periods such as late autumn and during wet summers, where storm FWM P concentrations and TP:SS ratios were high, it is recommended that an augmentation of farmer knowledge of soil drainage characteristics with local and detailed current and forecast soil moisture conditions will help to strengthen existing regulatory frameworks to avoid storm driven incidental nutrient transfers.
    • Improving the identification of hydrologically sensitive areas using LiDAR DEMs for the delineation and mitigation of critical source areas of diffuse pollution

      Thomas, Ian; Jordan, Philip; Mellander, Per-Erik; Fenton, Owen; Shine, Oliver; O hUallachain, Daire; Creamer, Rachel E.; McDonald, Noeleen T.; Dunlop, Paul; Murphy, Paul N. C.; et al. (Elsevier, 2016-03-12)
      Identifying critical source areas (CSAs) of diffuse pollution in agricultural catchments requires the accurate identification of hydrologically sensitive areas (HSAs) at highest propensity for generating surface runoff and transporting pollutants. A new GIS-based HSA Index is presented that improves the identification of HSAs at the sub-field scale by accounting for microtopographic controls. The Index is based on high resolution LiDAR data and a soil topographic index (STI) and also considers the hydrological disconnection of overland flow via topographic impediment from flow sinks. The HSA Index was applied to four intensive agricultural catchments (~ 7.5–12 km2) with contrasting topography and soil types, and validated using rainfall-quickflow measurements during saturated winter storm events in 2009–2014. Total flow sink volume capacities ranged from 8298 to 59,584 m3 and caused 8.5–24.2% of overland-flow-generating-areas and 16.8–33.4% of catchment areas to become hydrologically disconnected from the open drainage channel network. HSA maps identified ‘breakthrough points’ and ‘delivery points’ along surface runoff pathways as vulnerable points where diffuse pollutants could be transported between fields or delivered to the open drainage network, respectively. Using these as proposed locations for targeting mitigation measures such as riparian buffer strips reduced potential costs compared to blanket implementation within an example agri-environment scheme by 66% and 91% over 1 and 5 years respectively, which included LiDAR DEM acquisition costs. The HSA Index can be used as a hydrologically realistic transport component within a fully evolved sub-field scale CSA model, and can also be used to guide the implementation of ‘treatment-train’ mitigation strategies concurrent with sustainable agricultural intensification.